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ABSTRACT

Some sufficient conditions for existence of k-admissible Hall chains
(= Hg-chains) in normal subgroups of finite p-groups are established (for
irregular p-groups we consider only the case k = p). In Propositions 13-15
we study p-groups without Hjy-chains, and metacyclic 2-groups with the
above property are classified. Abelian p-groups with exactly one H-chain
are characterized in Proposition 12.

This note supplements [H, Theorem 2.5] and [B3, Theorem 1 and Supplement
2 to Theorem 1].

In what follows, G is a finite p-group, p is a prime, m, n, k, t are natural num-
bers and ¢ is a nonnegative integer. We use notation and agreements standard
for finite p-group theory, in particular, the bar convention (see [B2, B3]). We
assume throughout this note that

(x) H > {1} is a normal subgroup of a p-group G.

We begin with the following definitions.

Definition 1: Given k, let
C:{l}=Ly<Li<---<L,=H

be a chain (of length |C| = n) of G-invariant subgroups in H such that
exp(Li/Li—1) =p and |L;/L;—1| < p* for i = 1,...,n. Then C is called a
k-admissible chain in H. For this C, set io(C) = max {i > 0 : |L;| = p*'}.
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It follows that |L;,(cy+;| < pFo(€)+7) for all j > 0. In general, the sequence
{|L1|,|L2 : L1|.|Ls : Lal,...} is not monotone as, for k = 2, the metacyclic
group G = {(a,b | a® = 1,a* = b*,a® = a= ') shows (for this G, the sequence of
indices of C is 4,2,4). We have exp(L;) < p® for all i < n. In the sequel, C is as
in Definition 1.

Definition 2: A k-admissible chain C in H dominates over a k-admissible chain
Cr:{l}=My<M;<---<My=H
if, with respect to lexicographic ordering, the sequence
{|L1|,|L2 : L1l,. .., |Ln : Ln-1l]}

is greater or equal than the sequence {|M|, |My : Mo|,...,|Ms : Ms_1|}. In
that case, we write C > Cy. If, in addition, |L; : Ly—q1| > |M; : M| for some
t,but |L;: L;—1| = |M; : M;_4] for all i < ¢, we write |C| > |C1] (in that case, C
dominates strongly over Cy).

In the sequel, C; is such as in Definition 2.

Definition 3: A k-admissible chain C in H is said to be dominating if, for all
k-admissible chains C; in H, we have C > C;.

Thus, two k-admissible dominating chains in H have the same sequence of
indices. We also consider k-admissible chains in G-invariant subgroups A < H
and in H/A. There is a k-admissible dominating chain in H always.

Definition 4: A k-admissible chain C in H is said to be a Hall chain (or Hy-chain,
for brevity), if, for all j > 0, we have L; +; = Q.4+, (H), where iy = io(C).

Let p = 2 and let H be dihedral of order 8; then H has an Hs-chain. Now
let H < GG, where G is dihedral of order 16. Then there are no Hs-chains in H
(as a normal subgroup of G).

If a p-group G has an Hjy-chain C and Q;(G) = G, then all indices of the
chain C except for the last one are equal to p*. Indeed, if |L;| < p*!, then
L =Q;(G) =G soi=n. If Hhas a G-invariant subgroup R of order p* and
exponent p such that exp(H/R) = p, then H has an Hj-chain.

All p-groups of order p? and exponent p? have Hy-chains (notice that p-
groups of maximal class and order p??, which have no H,-chains, are of exponent
p3). To prove this, consider the quotient group G' = G/U1(G). Since absolutely
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regular p-groups of order p?” have exponent > p?, we get |G| > p? so |01 (G)| <
pP. It follows that U1(G) is regular. By hypothesis, U1(G) is generated by
elements of order p so exp(U1(G)) < p. Then, by Lemma 6, below, there is
R <G of order p? and exponent p such that U;(G) < R. Then {1} < R < G is
the Hp-chain in G.

If, in Definition 4, L;, 1 < H, then exp(L;,+1) = p®*!, and so exp(L;) = p’
for all i <mn. If io(C) > n — 1, then a k-admissible dominating chain C must be
an Hy-chain. As Lemma 3(a) shows, Hj-chains are k-admissible dominating,
however, the converse is not true in general. It is asserted in [H, Theorem 2.5]
and [B3, Supplement 1 to Theorem 1] that there exists in H an Hj-chain for
k < p — 1, however, this is not true for k¥ = p (see Remark 3, below). Some
conditions guaranteing existence of H,-chains in i are stated in Theorem 10.
Theorem 11 shows, in particular, that there is in regular H an Hjy-chain for
any k. Proposition 12 asserts that an abelian p-group G has only one Hj-chain
if and only if |Q1(G)| < p*. In Propositions 13 and 14 we study the p-groups
without Hjp-chains. The set M, introduced there, is an important invariant of
G.

If C and C; are Hy-chains in H, then L4y = Qig1u(H) = M;y4y, where
io = i0(C) and u > 1.

Example: Each 2-group of order < 23 has an Ha-chain. If G be a 2-group of
maximal class and order > 24 then, by Remark 3, below, G has no Hs-chain.
(i) We claim that if a group G of order 2* is not of maximal class, it has an
Ho-chain. Indeed, let R < G be abelian of type (2,2) (R exists, by Lemma
7). If G/R is noncyclic, then {1} < R < G is the desired Ha-chain. Now let
G/R be cyclic. If G has a cyclic subgroup of index 2, then R = Q;(G) and
{1} < R < 22(G) < G is the desired Hs-chain. If G has no cyclic subgroup
of index 2, then G = C - R, where C is cyclic of order 4. Let U < RN Z(G)
be of order 2 and Ry = U x (C)(< Z(G)y; then G/R; is abelian of type
(2,2) and so {1} < R; < G is the desired Ha-chain. (ii) A 2-group G of
order > 2% with cyclic subgroup of index 2, which is not of maximal class,
has the unique Ha-chain {1} < Q1(G) < Q(G) < --- < G as follows from
classification of such groups. (iii) We claim that a 2-group G of order 2°, which
is not of maximal class, has an Ha-chain. In view of (ii), we may assume that
G has no cyclic subgroup of index 2. Let R <G be abelian of type (2,2). If
H/R < G/R is abelian of type (2,2), then {1} < R < H < G is an Ha-chain.
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Now assume that G/R has no abelian subgroup of type (2,2). Then G/R is
either cyclic or 2 Qg, the ordinary quaternion group. (1iii) Let G/R be cyclic.
Then G = Z - R is a semidirect product, where Z is cyclic of order 8. In that
case, the subgroup Ry = Ry x Q1(Z) <G, where Ry < RN Z(G) is of order 2,
is abelian of type (2,2) and G/Ry has an abelian subgroup of type (2,2); then
G has an Ha-chain, as above. (2iii) Now let G/R = Qg. If Q1(G) = R, then
{1} < 1 (G) < Q2(G) < G is the unique Ha-chain in G. It remains to consider
the case where Q1 (G) = U is elementary abelian of order 8; then exp(G) = 4.
Let F/R < G/R be of order 4; then F' = L - R, where L is cyclic of order 4 and
RNL={1}. Let K < RNZ(G) be of order 2. Set Ry = K x Q1(L)(< Z(F));
then Ry <G and {1} < Ry < F < G is the desired Ha-chain in G.

It is easy to see that every minimal nonabelian p-group has an Hj-chain for
all k.
We are interested in the following statements concerning a p-group G and all
n:
1. Each element of U,,(G) is a p"-th power, i.e., U,(G) = {zP": z € G}.
2. exp(Qn (@) < p", ie., Q(G) ={z € G: o(x) < p"}.
3. | (G)] = |G : B (G)].

Definition 5: For ¢ € {1,2,3}, a p-group G is called a P;-group if all sections of
G satisfy condition (i) for all n, and G is called a P-group, if it is a P;-group
for ¢ = 1,2, 3 simultaneously.

In his important paper [M], Avinoam Mann has studied the interrelations
between the above defined properties P;, ¢ = 1,2,3, and P in detail. The
following unexpected result holds [M]: P3 C P2 C P; so that Ps-groups coincide
with P-groups (however, in what follows, we do not use this deep result). Regu-
lar p-groups are P-groups (Philip Hall). A Sylow 2-subgroup of the Suzuki
simple group Sz(22"*!) satisfies conditions 1-3 but it is not a Ps-group since
it has a nonabelian section of order 8, which has no property (3). For p = 2,
the irregular group Mani1 = (z,y | 22" = 42 = 1,2¥ = 2'72" ' n > 2) is a
P-group. For p > 2, Mann [M] constructed an irregular group X of order pP*+!
such that | (X)| = pP (this X is a P-group). All p-groups of maximal class are
P1-groups as follows from [B5]. A p-group of maximal class and order > pP*!
is not a Pa-group (see Lemma 5(b), below).
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See [Hup, Kap III] on p-groups with cyclic subgroup of index p, regular p-
groups and p-groups of maximal class

Remark 1: For a P-group G, the following assertions hold:
(i) 0(G)| = [92(G) /(G| 2 [9:3(G)/Q(G)] = -,

(i) |G/B1(G)] = [0:1(G)/B2(G)| = [02(G)/Bs(G)] = -+
We have exp(21(G)) = exp(Q2(G) /U (G)) = p so U1(22(G)) < 21(G) and
[0(G)] = [0 (22(G))] = [22(G)/01(22(G))| = [22(G) /0 (G

).
We have, for k > 1, Qi(G)/Q-1(G) = Q1(G/Q%—-1(G)). Therefore, (i) follows
by induction on k. As to (ii), we have

G 5:(6)]
|G U1(G)]
We suggest to the reader to finish the proof of (ii). The groups satisfying (i)

|G/01(G)] = [ (G)] = [Q2(G) /0 (G))] = [01(G)/02(G)|-

and (ii), are called upper and lower pyramidal, respectively. Next we prove
that if A < G, then |A/U1(A4)| = |21(A)] < [ (G)] = |G/U1(G)| since G is a
Ps-group.

We use the following fact freely: if exp(G) = p®, then exp(G/Q1(G)) < p¢~!
since Ue—1(G) < 0 (G).

A p-group G is said to be absolutely regular (Blackburn) if |G/U1(G)| < pP.
By Hall’s regularity criterion [H, Theorem 2.3], absolutely regular p-groups
are regular. All sections of absolutely regular p-groups are absolutely regular
(Remark 1(iii)). All p-groups of class < p (so groups of order < pP) are regular.
According Mann’s letter, G is regular provided G/Z(G) is absolutely regular
(for the proof, see [B1, Remark 7.2]).

For main properties of p-groups of maximal class, which we use in what
follows, see [B5].

LEMMA 1: Let F > {1} be a normal subgroup of a p-group G and let K be a
G-invariant subgroup of order p in F. Write G = G/K.

(a) Suppose that {1} = Fy < Fy < --- < F, = F is an Hy-chain in F
such that |F;| = p?* fori = 1,...,n. If every section of F of order pP*! has a
characteristic subgroup of order p? and exponent p, then there exists in F' an
Hp-chain {1} = Lo < Ly < --- < L, < Lyy1 = F such that |F; : L;| = p for
1=20,1,--- ,n so that L,, is of order p*™ and exponent < p™.
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(b) Let k be fixed and suppose that all sections of F of order p**1 are Ps-
groups. Suppose that {1} = Fy < F} < --- < F, = F is an Hy-chain in
F such that |F;| = p*¥ for i = 1,...,n. Then there exists in F' an Hy-chain
{1}=Lo<Li<--< Ly < Lp41 =Fsuchthat|F;: L;|=pfori=0,1,...,n
so that L,, is of order p*™ and exponent < p™.

Proof. We proceed by induction on |F|.

(a) By hypothesis, Fy is of order pP*! and Fy /K is of order p? and exponent
p. Suppose that F} is irregular. Then F} has a characteristic subgroup of order
pP and exponent p, and we denote that subgroup by L;. Now suppose that
Fy is regular. Then U1(F1) < K so |Q(F1)| = |F1/O1(Fy)| > |[Fu/K| = pP,
and we conclude that Qq(F1) is of order > pP and exponent p. In this case,
we take L1 to be an arbitrary G-invariant subgroup of order p? in Q4 (Fy). If
Fy, = F, we are done, so we let F; < F. The group F/L; is an extension of
F1 /Ly of order p by F/F; of order p?(®~1. By induction, there is an ‘H,-chain
Li/Ly < Le/Ly < -+ < L,/Ly1 < F/Ly such that |(F;/L1) : (L;/L1)| = p for
alli=2,---,n. Then {1} = Ly < Ly < --- < L,, < F is the desired H,-chain.!
(b) is proved in the same way as (a). |

LEMMA 2: Let F = Q,(H) and let C : {1} = Lo < Ly < --- < L, = F be an
‘Hi-chain of length n in F.

(a) Suppose that Cy : {1} < Lpy1/Ln < Lpi2/Ln < -++ < Lpym/Ln =
H/L,, where L,;/L, = Q;(H/L,), is an Hy-chain in the quotient
group H/L, = H/F. Then Cy : {1} = Lo < L1 < L, = F <
Lyt1 <---< Lypyy = H is an Hy-chain in H.

(b) If, in addition, k = p and H/F is absolutely regular, then the chain Co
from (a) is an Hjp-chain.

Proof. (b) follows from (a) immediately since H/F has an Hp-chain with
Ly+i/Ly, =Q;(H/Ly). It remains to prove (a).

One may assume that F' < H; then exp(H) > p" so, since exp(F') cannot be
> p", we get exp(F') = p”. For j <n, we have Q,;(F) = Q;(Q,(H)) = Q;(H).
To prove that Cy is an Hy-chain, it suffices to show that L,y; = Qp4;(H) for
i < m. Take z € H with o(x) < p"™*. We have to prove that x € L, ;. It
follows from F' = L, = Q,(H) and exp(L,) = p" that (z) N L, = Q,({(z)) so
(in H/L,) we have o(zL,) < p’, and hence xL,, € Q;(H/Ly,) = Lyyi/L,. 1

1 The same conclusion holds if every irregular section of F of order pP*! is an Ps-group.
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LEMMA 3: Suppose that there is an Hy-chain C (as in Definition 1) in H. Then

(a) C is a k-admissible dominating chain,
(b) all k-admissible dominating chains in H are Hy-chains.

Proof. Suppose that all considered chains are k-admissible.

(a) Let C; (as in Definition 2) be a dominating chain in H. We have to
prove that |L;| = |M;| for all i. Let t be such that |M;| < p*. We have
|L¢| < |My| < p** so Ly = Qi(H) since C is an Hy-chain. Since exp(M;) < p',
we get My < Q(H) = L; so Ly = M;. Next assume that |Ls| < p*®; then
L, = Qs(H) > M; so, since the chain C; is dominating, we get My = L. Now
let |M,| = pP*. Then, by the above, |L,| = pP*, completing the proof of (a).

(b) Let C; be a dominating chain in H; we have to show that C; is also an
Hy-chain. By (a), the chain C is dominating so |L;| = |M;| for all 4, and we get
ip = i0(C) = i9(C1). Since C is an Hj-chain and exp(M;,1,) < pott, we get
Ligyu = Qigpu(H) > M, 1, for all u > 0 so My yu = Qigyu(H) = L4y since
C; is dominating, and we are done. |

The point of Lemma 3(b) is that if we want to prove that all k-admissible
dominating chains in H are Hy-chains, it suffices to show that at least one of
these chains is an Hj-chain.

LEMMA 4: Let C be a k-admissible dominating chain in H. Set G = G/Ly.
Then C: {1} < Ly < --- < L, = H is a k-admissible dominating chain in H.

Proof. Indeed, suppose that C; is a k-admissible dominating chain in H and
assume that C; > C; then the chain C;, which is the ‘inverse image’ of the chain
C1, is k-admissible and satisfies C; > C, a contradiction. |

If C is a k-admissible dominating chain in G = G/N, where N is of order
p* and exponent p, then its inverse image C is k-admissible but can be not
dominating in G. Indeed, let G = U x V x W, where U,V and W are cyclic
of orders p, p, p?, respectively. Let k =2 and L1 = U x V, G = G/Ly. Then
the chain C with L; = Ly x Q;_1(W), i = 1,2,3, is not an Ha-chain in G
although {1} < Ly < L3 = G is an Ha-chain in the cyclic p-group G. Indeed,
if My =U x (W) and My = G, then the chain C; : {1} < M; < My =G
dominates over C.
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LEMMA 5: Let G be an irregular p-group of maximal class. Then all sections
of G of order pP™! are P3-groups (P2-groups) if and only if |G| = pP*! and
[ (G) =p" (U(G) <G).

Lemma 5 follows easily from Blackburn’s theory of p-groups of maximal class
(see [B5]).

Proof. Assume that |G| > pP™'; then G/K,41(G), where K,1(G) is the
(p + 1)-st member of the lower central series of G, is neither Ps3- no Pa-group.
It remains consider the case |G| = pPTt. If G is a Ps-group, then |Q;(G)| =
|G/UG1(G)| = pP. Next, G is a Pe-group if and only if Q1 (G) < G. |

LEMMA 6: If H has a G-invariant subgroup B of order p? and exponent p, then
each maximal G-invariant subgroup of H of exponent p is of order > pP.

Proof. Let A be a maximal G-invariant subgroup of exponent p in H. We have
to prove that |A| > pP. Assume that this is false; then A £ B. Let R < B be
the least G-invariant subgroup such that R £ A. Then |A| < |AR| = p|A| < p?
so AR is regular. It follows from Q;(AR) = AR that exp(AR) = p, contrary
to the choice of A. (Similarly, under hypothesis of Lemma 6, every maximal
subgroup of exponent p in H has order > pP.) |

LEMMA 7 (B2, §7, Remark 2): Suppose that the p-group G is neither absolutely
regular nor of maximal class. Then the number of subgroups of order pP and
exponent p in G is = 1 (mod p) (so G has a normal subgroup of order p? and

exponent p).

Let G be a p-group. Set UY(G) = U1(G). If U'(G) has been defined, we set
U HG) = U1(UY(@G)). Since exp(G/TF(G)) < p*, we get U(G) < U*(G) for
all k. If G is a P-group of exponent p¢, then U¢(G) = U;(G) for all i.

LEMMA 8: Let |G| = p™, exp(G) < p° and m < ke.

(a) If G is lower pyramidal, then U¢~!(G) is of order < p*, and if
m < ke, then |5¢~1(GQ)| < p*. If, in addition, G is a Pay-group, then
exp(Ue-1(G)) < p.

(b) If k = p, then U°~1(Q) is either absolutely regular or of order pP and
exponent < p. In either case, U.—1(G)(< U¢71(Q)) is of exponent p.
If, in addition, m < pe, then we have |Q1 (01 (G))| < pP s0 Ue—1(G)
is of order < pP~! and exponent p.
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Proof. (a) is obvious (the last assertion is true since U._1(G) < Q1(G)). For
the proof of (b), see [B4, Lemmas 4, 6]. |

The following two assertions hold. (a) Let G be an absolutely regular p-group.
If |G| > p®P~ Dk then exp(G) > p*. (b) Now let G be a p-group of maximal
class and order p™, m > p+1. If m — 1 = (p — 1)k, then exp(G) = p*. If
m —1 > (p— 1)k, then exp(G) > p*. Assertion (a) follows since absolutely
regular p-groups are pyramidal (Remark 1). As to (b), a p-group G of maximal
class has an absolutely regular subgroup G of order p™~1, and exp(G;) =
exp(G) [B5]; so the result follows from (a).

LEMMA 9: (a) Let H be of order pP¢ and exponent < p°. Then all indices of
any p-admissible dominating chain in H equal pP.

(b) Let H be a pyramidal (see Remark 1) Ps-subgroup of order p¥¢ and
exponent < p®. Then all indices of any k-admissible dominating chain in H
equal p*.

Proof. One may assume that e > 1. We use induction on |H]|.

(a) By the paragraph preceding the lemma, H is neither absolutely regular nor
of maximal class. Therefore, by Lemma 7, H has a G-invariant subgroup, say R,
of order pP and exponent p. Suppose that exp(H) < p¢~!. Then exp(H/R) <
exp(H) < p®~' and |H/R| = pP¢=1). Therefore, by induction, there is in H/R
an H,-chain {1} = R/R = T1/R < T3/R < --- < T./R = H/R, and all
indices of this chain are equal to pP. In that case, {1} < Ty < --- < T, = H
is the desired Hp-chain. Therefore, one may assume, in what follows, that
exp(H) = p°. In that case, U._1(H) is of order < pP and exponent < p
(Lemma 8(b)) so U._1(H) < R, where R < H is a G-invariant subgroup of
order p” and exponent p (Lemma 6). Then H/R is a normal subgroup of order
pPe~ and exponent < p°~! in G/R. By induction, there exists an H,-chain
{1}=R/R=L;/R< Ls/R<---< L./R= H/R in H/R such that all indices
of this chain equal p?, and so {1} < R=L; < Ly < -+ < L. = H is the desired
'H,-chain.

(b) Asin (a), one can assume that exp(H) = p°. Since H is lower pyramidal,
|Ue_1(H)| < p*. Since U._1(H) is generated by elements of order < p and
H is a Py-group, we get exp(Ue—1(H)) < exp(1(H)) = p. Since H is upper
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pyramidal, we get |Q;(H)| > p*. Let U._1(H) < R < Qy(H), where R is G-
invariant of order p*. Then H/R is of order p*(¢~1) and exponent < p¢~'. Now
the result follows by induction in H/R, as in (a). |

Remark 2: Let H be a normal subgroup of order < p*® and exponent p® in a
p-group G. Suppose that there exists an Hi-chain C in H (as in Definition 1).
We claim that then n = e. Indeed, this is trivial for e = 1 so we let e > 1.
Clearly, n > e. Assume that n > e. Then |L, ;| < |H| < p*® < pFn=1) g
Qn-1(H) = Lp—1 < H since C is an Hy-chain. It follows that exp(L,—1) =
p"~! > p° a contradiction, since Q,_1(H) = H.

Let G be a group of order p™ possessing an Hy-chain, say C : {1} = Ly <
Li< - <Lj<--<Lp,=G. Let m = [m/k]k + s, where s < k. Assume
that [Q(G)| > p** for all t < [m/k]. We claim that then iy = io(C) = [m/k],
where [z] is the integer part of the real number z. Clearly, ip < [m/k]. Assume
that ig < [m/k]. Then |Q;,11(G)| < p*ot1) so, since ig + 1 < [m/k], we get
Qi) (G)] < pl™/Klk contrary to the assumption. Otherwise, io(C) equals such
t that |Q¢(G)| > p* and |Q11(G)| < pFE+D.

Let C be an Hy-chain of length n in H with ig = io(C). Suppose that
exp(L;,) < p. We claim that then n < i + 1. Assume that n > ig + 1.
We have exp(Lj,+1) < p™*l. Since Qi 41(H) = Liy,+1 < H, it follows that
exp(Li,+1) = p®*L, contrary to what has just been said.

Remark 3: Let G be an irregular p-group of maximal class. (i) If G has an
H,-chain, then either |G| = pP*! or pP™! < |G| < p? and |2 (G)| = pP~ 1. (ii)
Conversely, if [Q1(G)| = pP~! and |G| < p??, then G has the unique H,-chain
{1} < 91(G) < G of length 2. Let us prove these assertions using [B5]. Let C be
an H,-chain in G and assume that |G| > pP*!. Since G has no normal subgroup
of order pP and exponent p, we get |1 (G)| = pP~!. Since |La| < p?P, we get
Ly = Q2(G). Since Q2(G) = G [B2, Remark 7.8], we have |G| < p*. In that
case, exp(G/L1) = p is of order < p” and exponent p so C : {1} < 0 (G) < G.
Next, any group G of order pP*™! has an Hp-chain. This is obvious if G is
regular [Hup, §I11.14]. If G is irregular, ®(G) is of order p?~! and exponent p.
If Q1(G) = ®(G), then {1} < ®(G) < G is an H,-chain. If Q1 (G) > @(G),
then G has a maximal subgroup M of exponent p; then {1} < M < G is an
Hp-chain. Now assertion (ii) is obvious. (Any regular p-group of maximal class
has an Hj-chain; see [Hup, §I11.14] or Theorem 11, below.)
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THEOREM 10: Let H > {1} be a normal Py-subgroup of a p-group G. Suppose,
in addition, that every irregular section of H of order pP*! has a characteristic
subgroup of order p? and exponent p. Then there exists in H a chain C : {1} =
Ly < Ly <--- < L, = H of G-invariant subgroups with the following properties
(t=1,...,n):

(a) L;/L;—y is of order < pP and exponent p, and

(b) either |L;| = p?* or else L; = Q;(H).

In other words there is in H an Hp-chain. Then it follows from Lemma
3(b) that each p-admissible dominating chain in H is an H,-chain. If, in our
theorem, p = 2, then the subgroup H is powerful, i.e., H/U2(H) is abelian [LM].
To prove this, we suppose that H is a minimal counterexample. By hypothesis,
all sections of H of order 8 are abelian so H is also modular (Iwasawa). One
may assume that exp(H) = 4. Then H is minimal nonabelian so |H| < 2°.
It follows from Redei’s classification of minimal nonabelian 2-groups that H
has a nonabelian epimorphic image of order 8, a contradiction. It follows from
properties of powerful p-groups that H is pyramidal. In what follows, however,
we do not use the above results. Also notice that if U is an irregular section of
G of order pP™1 then |Q(U)| = |U/G1(U)| = p*.

Proof. If {1} < N < H is G-invariant, then the pairs H/N < G/N and N < G
satisfy the hypothesis. We proceed by induction on |H|. Let exp(H) = p¢. One
may assume that e > 1. Obviously, all G-invariant sections of H satisfy the
hypothesis.

(i) Suppose that H has no G-invariant subgroup of order p” and exponent p.
Then H is either absolutely regular so {1} = Qo(H) < Q1 (H) < --- < Q.(H) =
H is an ‘H,-chain in H, or irregular of maximal class and order pP™! (Lemmas
7 and 5); in the last case, H must have a characteristic subgroup M of order
pP and exponent p, contrary to the assumption.

In what follows we assume that H has a G-invariant subgroup of order p?
and exponent p. Let Fy < H be a G-invariant subgroup of order p and set
G = G/F,. By induction, there exists an H,-chain

6/:{1}2F0<F1 <"'<Fn:g
in H. Write ig = iO(E/). By Lemma 1, there exists an Hp-chain

CII2{1}1L0<L1<"'<LiU<EO
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in F;, with |F;, : L;,| = p, so that

(o) F;, contains a G-invariant subgroup L;, of order pP® and exponent < p,
ig > 0.

One may assume that i9 < n (otherwise, C" is the desired chain) so F;, <
F; 1. Next, H/F,,(= H/F,) has no G-invariant subgroup of order p? and ex-
ponent p (otherwise, if U/F;, < H/F;, is such a subgroup, then the p-admissible
chain {1} = Fy < F} < --- < F,, < U < --- < H dominates strongly over c,
contrary to Lemmas 4 and 3(a)). Therefore, by Lemma 7, H/F;, is either ab-
solutely regular or irregular of maximal class. Assume that H/F;, is irregular
of maximal class. Then |H/F,,| > pP™! (otherwise, H/F;, has a G-invariant
subgroup M/F;, of order pP and exponent p, contrary to what has just been
said). In that case, H/F;, has a subgroup K/F;, of maximal class and order
pPT1 [B5]. By hypothesis, K/F;, has a characteristic subgroup L/F;, of order
p” and exponent p. Then N/F;, = Ng,p, (L/F;,) is of maximal class [B5]
and order > pP*1; then L/F,, < ®(H/F;,)) so L/F;, is absolutely regular, a
contradiction. Thus, H/F;, is absolutely regular so H/L;, is regular, by the
paragraph following Remark 1. We have:

(8) H/F,, is absolutely regular, H/L;, is regular and |Q(H/L;,)| < p -
Q4 (H/F,)| < p-pP~* = pP, and s0

(7) If j > io + 1, then |F}| = p|Fj| < p*.

Since C' is an H,-chain, Q;,11(H) = F;, 41, so, by [B3, Remark 3],

(0) Qig+1(H) < Fyy41 hence Q41 (H) = Qi1 (Fig+1) so, if Fjy11 < H, then
exp(Fiy11) > plott.

Since exp(F;) < p', we get exp(F;) < p-exp(F;) < p'*t! for all i so

(€) exp(Fig41) < pot2.

Suppose that ig = 0. In that case, as in the paragraph following («), H is
absolutely regular. Then Fy = Q;(H) is of order < p?, by (d), so Fy = Q1 (H)
must be of order pP and exponent p since, by the assumption, H has a G-
invariant subgroup of order p? and exponent p, and H/Q(H) = H/Fy, = H/Fy
is absolutely regular, by (8). In this case, by Lemma 2(b), there exists an
H,-chain in H.

Next we let ig > 0; then |Fy| = pP™! and exp(Fy) < p°.

(i) Let exp(Fj,+1) < p*t. Then, by (8), Fj,+1 = H so ip + 1 = n. We also
have |H| = |Fj,41| < pPlotD, Let {1} = Ly < Ly < --- < L;, < F;, be an
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‘Hp-chain in F; with |F;, : L;,| = p and all other indices of our chain equal p?
(Lemma 1).

If exp(H/L;,) =p, then {1} = Ly < L1 < --- < L;; < H is an Hp-chain in H
since all indices of this chain but last one are equal to p?. Since exp(H/L;,) < p?,
one may assume that exp(H/L;,) = p?. Therefore, since H/F;, (= F;,+1/F;,) is
of order < pP~! and exponent p, the G-invariant subgroup U/L;, = Q1 (H/L;,)
is of exponent p and index p in (the regular) group H/L;,. In that case, {1} =
Lo < Ly < --- < Ly < U is an Hp-chain in U since only the last index
of this chain is < pP. Since exp(H/F;,) = p and |H/F;,| < pP~ !, we get
U1(H) < Fj,: H is not absolutely regular in view of i9 > 0. It follows that
|O1(H)| < pP - |H| < pP. Therefore, there exists a G-invariant subgroup Tj,
satisfying U1(H) < T;, < F;, and |T;,| = pP®. Since, in addition, we have
exp(T;,) < exp(H) = exp(F;,41) < p%, there exists an H,-chain {1} = Ty <
Ty < --- < T, in T;, of length iy and all indices of this chain equal p? (Lemma
9(a)). Then {1} = Tp < Th < --- < T;, < H is an H,-chain in H since
|H/T,,| < p? and exp(H/T;,) = p

(iii) Let exp(Fy,1+1) = p°tt. By (§), Qiy+1(H) = Fi 11, and H/F; 41 is
absolutely regular, by (/).

Suppose that F;, 11 < H. To prove that there is an H,-chain in H, it suffices
to show, in view of Lemma 2(b), that Fj 41 has an H,-chain of length i + 1.
Let U = Qi (Fig41)(= Q4 (H)); then exp(U) = p' since H is a Pa-group
and exp(F;,+1) = p°T1. Since L;, < U, we get |U| > |L;,| = pP". We have
exp(F;,+1/U) = p since the Pa-group Fj,4+1/U is generated by elements of order
p. It follows that U1 (F;,+1) < U. Since ig > 0, we get | Fyy+1/01(Fig+1)| > pP so
|01(Fiy+1)| < p7P|Fyy41] < pPio. Tt follows that there is a G-invariant subgroup
T;, of order pP® such that Uy (F;,11) < T;, < U; then exp(T;,) < exp(U) = p'e.
By Lemma 9(a), there is an Hp-chain {1} = Ty < T3 < --- < T, in Tj, of
length ip, and all indices of that chain equal p?. Then {1} =To <T1 < --- <
T;, < Fjy4+1 is an Hp-chain in Fj 11 of length i + 1 since exp(Fi,4+1/T5) = p
and |Fo41/T,| < pP.

Now we let Fj,41 = H; then exp(H) = p*l and pPo = |L;| < |H|
pPlotD) - Write U = Q;,(H); then as in the previous paragraph, exp(U)
p, exp(H/U) = p and |U| > |L;,| = pP* so |H : U| < pP. Then there is
a G-invariant subgroup Tj, of order pP® such that Uy(H) < T;, < U since
|H : U1(H)| > pP: H is not absolutely regular. We have exp(T;,) < exp(U) =
p and exp(H/T;,) = p. Therefore, if C' : {1} =Tp < Ty < --- < T, is an

IN
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Hp-chain in T, all of whose indices equal p? (Lemma 9(a)), then {1} = Ty <

T < -

- < T;, < H is an Hy-chain in H since |H/T;,| < pP.

(iv) It remains to consider, in view of (¢), the case exp(F;,11) = p®®*?; then

exp(Fj,) = p*! since exp(Fy,) < pt! and p'ot? = exp(Fj,41) < p - exp(Fj, ).
By (8), Qig+1(H) = Qig+1(Fjg+1). By (7), |Fig41| < pPloth).

(Liv)

(2iv)

First suppose that Fj 11 < H. Let ¢’ : {1} = Lo < L1 < -+ <
Li, < -+ < Fjy41 be an Hpy-chain in Fj 4, existing by induction. As
in the paragraph following («)), H/F;, is absolutely regular so H/L;,
is regular and Qy(H/L;,) is of order < pP (see (). We have L; 41 =
Qio+1(Fig+1)(= Q4p41(H)) since C’ is an H,,-chain. Also, L +1 < Fj 41
in view of exp(L;,11) = pot! < po+2 = exp(Fj,+1). Next, Liy1+1/Li, =
M (H/L;,) (indeed, if D/L;; = Q1(H/L;,), then exp(D) < p*! so
D < Qi+1(H) = Qg41(Fig41) = Lig+1), so Fiy < Liy41. It follows
that H/L;,4+1 is absolutely regular as an epimorphic image of H/F;,
(see (£)). In that case, there is an Hp-chain in H since {1} = Ly <
Ly <--- < Ljy < Lijy41 is an Hyp-chain in L;g 11 = Q41 (H) of length
i0 + 1 (Lemma 2(b)).

Now let Fj, 11 = H; then |H| < pPtotD and exp(H) = pot2. Set U =
Qi +1(H); then exp(U) = p*t! since H is a Pa-group, exp(H/U) = p
as above, and U contains a G-invariant subgroup L;, of order pP® and
exponent p®. By induction, there is in U an H,-chain, say C' : {1} =
Ky<Ki < <K;, <-+-<U. Wehave K;j11 = Q;,1(U) =U
so |C'| = ip+ 1. It follows that {1} = Ko < K1 < -+ < K;, <
Kiy+1 =U < H is an Hp-chain in H since H/U is of order < |H/L;,| <
pP and exponent p. This completes the proof of (iv) and thereby the
theorem. |

It is worthwhile to notice that if G is an irregular Ps-group of order pP*!,

then Q1 (G) is its characteristic subgroup of order p? and exponent p.

The proof of Theorem 10 does not work if we suppose from the start that

H = G (however, the theorem is true for H = G). Indeed, then we cannot use

induction in proper normal subgroups of G.

THEOREM 11: Let H > {1} be a normal P-subgroup of a p-group G and let k
be fixed. Then there exists in H a chainC : {1} = Lo < L1 < --- < L, = H of
G-invariant subgroups with the following properties (i = 1,...,n):
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(a) L;/L;_ is of order < p* and exponent p, and
(b) either the order of L; is exactly p'*, or else L; = Q;(H).

In other words, there is an Hy-chain in GG. As we have noticed, the theorem
is known for k € {p — 1, p}.

Proof. We proceed by induction on |H|. Set exp(H) = p° and assume that
e>1landk > 1.

(i) Suppose that H has no G-invariant subgroup of order p* and exponent p.
Then |Q(H)| < p* since H is a Pa-group. Since H is pyramidal (Remark 1)
and Po-group, {1} < Q1 (H) < -+ < Q(H) = H is the unique Hy-chain in H.
In what follows we assume that H has a G-invariant subgroup of order p* and
exponent p so, since H is a Ps-group, we get |H : U1(H)| = |Q1(H)| > p*.

(ii) If H is of order p** with ¢ > e, then the theorem is true, by Lemma 9(b).

(iii) Suppose that H is of order p'*** with t > e and 1 < s < k;
then |01 (H)| < p~* - |H| < p* since H is a Ps-group, by hypothesis. There-
fore, there is a G-invariant subgroup U < H of order p** such that U;(H) <
U. We have exp(U) < p® < p' so, by Lemma 9(b), there is an Hj-chain
{1} =Uy < Uy < --- < U =U of length t; since all indices of that chain are
equal to p* and H/U is of order < p* and exponent p, it follows that {1} =
Uy<U; <---<Us < His an Hg-chain in H.

(iv) Suppose that |Q,(H)| = p** for some t < e. If t = e, then there is an Hy-
chain in H (Lemma 9(b) and Remark 1). Now let ¢ < e; then exp(2;(H)) = p’.
By Lemma 9(b), there is an Hg-chain {1} = Ly < L1 < --- < Ly = Q4 (H)
of length t in Q;(H). Set G = G/L;. By induction, there is an Hj-chain
{1} < L4y < -+- < Lyymm = H in H. Then, by Lemma 2(a), {1} = Ly <
Ly < <Ly <Lyy1 <+ < Lyyy = H is an Hy-chain in H.

(v) Suppose that |Q;(H)| > pt* for all ¢ < e. In particular, |H| > p®*. Then
|H| = ptok+s for some integers to and s < k. It follows that p°* < |H| = plok+s
so tg > e. As we have noticed, |H : U1(H)| > p*. Let U, /U1(H) be a G-
invariant subgroup of index p® in H/U1(H); then |Uy,| = p'* and exp(Uy,) <
p¢ < p'. By Lemma 9(b), there is an Hy-chain {1} = Uy < Uy < -+ < Uy,
in U;, with all indices equal p*; then {1} = Uy < U; < --- < U, < H is an
‘Hp-chain in H.

(vi) Suppose that |Q;(H)| < p** for some positive t < e. Let ¢ be minimal
subject to that inequality. Then ¢ > 1 since H has a G-invariant subgroup
of order p* and exponent p. By the choice of ¢, we get |Q,_(H)| > pt=1k,
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In view of (iv), one may assume that |Q; 1(H)| > pt~V*. Tt follows that
1Q:(H)/Q_1(H)| < p*~' so that |[Q(H/Q_1(H))| < pF=' (indeed, if
A/Q 1 (H) < H/Qu_1(H) is of order p*~! and exponent p, then A < €;(H) and
A'is of order > p** > |Q;(H)|, which is not the case). Thus, the pyramidal quo-
tient group H/Q;_1(H) (Remark 1) has no normal subgroup of order p* and ex-
ponent p. So, setting G = G/ (H), we conclude that {1} < Q;(H) < --- < H
is an Hy-chain in H. Therefore, in view of Lemma 2(a), it suffices to prove
that there is in Q;(H) an Hy-chain of length ¢. Assume that this is false; then
the length of our chainis > tsolet {1} =To <Ty < -+ - < Ty < -+ < U (H)
be an Hjy-chain in Q;(H). Since |T3| < | (H)| < p'*, it follows that T, =
Q:(Q:(H)) = Q¢ (H), which is a contradiction.
Since all possibilities for £;(H) are considered, the proof is complete. |

It is possible to prove Theorem 10 in the same way as Theorem 11 but the
presented proof is shorter. However, the argument in the proof of Theorem 10
is more universal since it also proves [B3, Theorem 1], which is not the case for
argument in the proof of Theorem 11.

Let G be an arbitrary p-group of order p”. Then W = G x E, where F is the
elementary abelian p-group of order p”(*~1 | has a chain of normal subgroups
of length n all of whose factors are of order p* and exponent p.

Let G be an abelian p-group of exponent p¢ > p. We claim that G is homo-
cyclic if and only if U._1(G) = Q1(G). Suppose that the last equality holds.
Set |Q1(G)] = p?. Then G = Z; x --- x Zg, where Z; are all cyclic. In that
case, Ue_1(G) = Ue_1(Z1) X -+ x Ue_1(Zy) is of order p? so |Ue_1(Z;)| = p. Tt
follows that |Z;| = p© for all i, hence G is homocyclic. The converse assertion

is obvious.

Remark 4: Given a normal subgroup H in G, let Chy(H) be the number of
Hp-chains in H. We claim that if C : {1} = Lo < L; < --- < L, = G
is an Hy-chain in G, then Chy(G) > Chi(L;) for all j < n. Assume that
{1} =My < My <---< M, = Lj is an Hy-chain in L;. Then C’: {1} = M, <
M, <---<M;=L;j<Ljy; <---<Ly=G1is an Hjp-chain. This is true for
j < ip. Now let j > ig. Let iy < ia < j. Then M;, = Q,,(M;) = Q,,(L;) =
Q, (25(G)) = Q4,(G) so €' is an Hy-chain in G, and we are done.

PROPOSITION 12: An abelian p-group G has exactly one Hy-chain if and only
if |01 (G)| < p*.
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Proof. If |1 (G)| < p¥, then {1} < Q1(G) < -+ < Qe(G) = G (exp(G) = p®) is
the unique Hj-chain in the pyramidal group G.

It remains to prove that if G' has exactly one Hy-chain, then | (G)| < pF.
Assume that G is a counterexample of minimal order, then & > 1, e > 1
and |[Q1(G)| > p*. By Theorem 11, there is in G an Hj-chain C : {1} <
L1 <--- < L, = G, and this chain is unique, by hypothesis. By assumption,
|L1| = p*. In view of Remark 4, each member L; of the chain C has exactly one
Hy-chain so, by induction, |Q1(L;)| = p* for 1 < j < n. Set ig = io(C).

Suppose that n > ig+ 1. Then Q;,+1(G) = Liy+1 < G s0 Q1(G) < Liy4+1. By
induction, |Q1(L;,+1)| = p¥, a contradiction since Q;(G) = Q1(Li,+1). Thus,
n S io + 1.

Write G = G/Ly. If C; is an Hj-chain in G, then its inverse image C; in G
is also an Hj-chain in G. Indeed, io(C1) = i0(C) = ip — 1 so all indices of the
chain C; apart for possibly the last one, are equal to p¥, and our claim follows.
We conclude that C : {1} < Ly < --- < L,, = G is the unique Hj-chain in G
(Lemma 4) so [Q1(G)| < p*. Tt follows that Q1(G) = Lz so Q1(G) < Lo; then
01 (G) = Qi (Le).

Assume that Ly < G. Since Lo has only one Hj-chain (Remark 4), we get,
by induction, |1 (L2)| = p* so |21 (G)| = p*, contrary to the assumption.

Now let Ly = G. Then |G| = |L1||L2/L1| < p?*, p* < | (G)| = |G/T1(G)|
and U1(G) < Q1(G). Tt follows that [U1(GQ)| < p*. Let U1(G) < My < Q1(G),
where |M;| = pF. Since there are > 1 possibilities to choose M, one may
assume from the start that My # L;. Then C': {1} < M; < G is an Hj-chain
in G and C’ # C, a final contradiction. ]

Let p > 3 and let P be a Sylow p-subgroup of the symmetric group of degree
p?. Set G = P/U1(P). Let H be the unique abelian subgroup of index p in G
and k > 1 a proper divisor of p — 1. Then there is only one Hg-chain in H and
O (H) = H is of order |Q(H)| = |H| = pP~* > pF.

SUPPLEMENT 1 TO PROPOSITION 12: Let H <G be abelian such that all sub-

groups of H are normal in G. There is exactly one Hy-chain in H if and only
if | (H)| < p*.

SUPPLEMENT 2 TO PROPOSITION 12: IfG is an abelian p-group with |Q (G)| >
p¥, then Chy(G) > p+1 (see Remark 4).
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Proof. Suppose that G is a counterexample of minimal order. Let C be an
Hpi-chain in G. Then, by Remark 4, we must have Chy(L;) =1 for all j < n.

Assume that n > i9+1. Then L;;+1 = Qiy4+1(G) < G s0 U (G) = Q1(Lsg41)-
Since Chy(Liy+1) = 1, we get |Q1(Liy+1)] = p* (Proposition 12), which is not
the case.

Thus, n < ig+ 1. Tt follows from the proof of Proposition 12 that Chy(G) >
Chi(G/Ly) so Ch(G/L1) = 1, by induction. By Proposition 12, |21 (G/L1)| <
p* so Q1(G/Ly) = La/Ly, and we conclude that Q1(G) = Qy(L2). If Ly < G,
then Chy(L2) = 1 so |Q(Ls)| = p* (Proposition 12), contrary to the assump-
tion.

We conclude that Ly = G. Then |G| < p?* and, as in the proof of Proposition
12, |51(Q)] < pF. If U1(G) < My < Q4(G) is such that |M;| = pF, then
{1} < M; < G is an Hj-chain in G. Since the number of possibilities for the
choice of Mj is > p+ 1, we get Ch(G) > p+ 1 (Remark 4), and G is not a

counterexample. |

It is interesting to classify the abelian p-groups G with Chy(G) =p+ 1. It
follows from the proof of the previous supplement that then |U;(G)| = pF~!

and |Q(GQ)| = pFtl.

Remark 5: Let us show that, for a nonabelian p-group G, Chi(G) = p+ 1
if and only if G is of maximal class. Clearly, if G is of maximal class, then
Chi(G) = p+ 1. Now, supposing that Ch;(G) = p+ 1, we prove by induction
on G that G is of maximal class. Set |G| = p™. The assertion holds for m = 3;
so assume that m > 3. Every Hj-chain in G is not more than a principal series
of G. It follows that |G/G’| = p* so Z(G) < G'. Each normal subgroup of G
is a member of some Hi-chain. We conclude that G’ has only one G-invariant
subgroup of order p which we denote by R;. Since m > 3 and |G/G'| = p?,
G/R; is nonabelian. Obviously, Chi(G/R1) = p + 1 so, by induction, G/R;
is of maximal class, and we have |Z(G/R;)| = p. It remains to show that
|Z(G)| = p. Assume that this is false. Then |Z(G)| = p? and Z(G) is cyclic
(otherwise, Ch1(G) > (p+ 1) > p+ 1). Since G is not of maximal class, it
has a normal abelian subgroup, say R, of type (p,p). Since Ry < R, we get
R/Ri1, Ry/R1 < Z(G/Ry) so |Z(G/G1)| > p?, a final contradiction.

In conclusion we consider an arbitrary p-group G without Hp-chains. By
Theorem 11, G must be irregular. Let M be the set of all normal subgroups
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H of G such that there is an H,-chain, say Cy, in H (as a normal subgroup of
G). Let Mg be the set of all H € M such that, whenever H; € M with an
‘H,-chain, say Cp,, then, with respect to lexicographic ordering, the sequence
|L1|,|L2 : L1|,...,|Ly : Ly—1| of indices of the chain Cy is greater or equal than
the sequence |Mi|, | My @ Mol,...,|Ms : Ms_1| of indices of the chain Cp, (so
that we compare only H,-chains). Thus, if H, H; € My, then io(Cy) = i0(Cry ),
|Cx| = |CH, |, |H| = |H1| and corresponding indices of these chains are equal.
In what follows we use the notation introduced in this paragraph.

Let G be a p-group of maximal class and order > p3 and let R <« G with
|G : R| = p*. Then G/R has the unique abelian subgroup G /R of index p. This
(G is called the fundamental subgroup of G. Clearly, (G; is characteristic in
G.2 1If, in addition, |G| > pP*!, then G| is the unique regular maximal subgroup
of GG; all other maximal subgroups of GG are irregular of maximal class.

PROPOSITION 13: Let a p-group G have no Hy-chains and let H € Mg, p > 2.
Suppose that H has no normal subgroup of order p? and exponent p, or, what
is the same, ig(Cyr) = 0. Then G is of maximal class and order > p* and H is
either absolutely regular or of maximal class.

(a) If H is absolutely regular, then H = G1, the fundamental subgroup of
G, and Mo = {H}.

(b) Suppose that H is irregular of maximal class. Then |G : H| = p,
|H| = p??~! and | (H)| = pP~!. In that case, G1 & M.

Proof. By Theorem 11, G is irregular. We also have |G| > pP*! (otherwise, G
has an H,-chain as Remark 3 shows). It follows from Lemma 7 that H is either
absolutely regular or irregular of maximal class. If there is R < G of order p?
and exponent p, then the H,-chain Cr : {1} < R dominates over Cy, contrary
to the choice of H. Therefore, by Lemma 7 and Theorem 11, G is of maximal
class. Since G has a normal subgroup of order p?~! and exponent p, we get
| (H)| = pP~t. Tt is worthwhile to notice that any normal subgroup K of
index > p in G is contained in ®(G) so absolutely regular; then also K < Gy.
Since G has no ‘H,-chain, we get |G| > p*~1 (Remark 3).

2 Using so defined subgroup G1, it is easy to construct an Hg-chain in G for each k,
1 < k < p (see Remark 3). Indeed, let |G1| = p™, where n = kt+s, 0 < s < k. Let L; be
a G-invariant subgroup of order p** in G1,i <t. ThenC: {1} =Lo<IL1 <---<L: <G
is an Hg-chain in G. So constructed chain C is a unique Hg-chain in G if and only if
s > 0 (for s = 0, the number of Hy-chains in G equals p + 1).
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Let H be absolutely regular. Then |G : H| = p (otherwise, H < G and there
is an Hp-chain in G). Since G is the unique regular maximal subgroup of G,
we get H = 1. Suppose, in addition, that Hy € My — {H}. In that case, Hy
is irregular of maximal class and index p in G. Since Hy has an Hp-chain, we
get |H| < p*~! so we have |Hy| = p??~? since |G : Hp| = p and G| > p?P~1.
In that case, the last index of the H,-chain of Hy equals p? so it is not equal
to every index of the H-chain of the absolutely regular group H, and this is a
contradiction. Thus, we have My = {1}, completing the proof of (a).

Now let H be irregular of maximal class. Then, as we have noticed already,
|G : H| = p. By Remark 3, since |G| > p?P, we get |H| = p**~1. Since G has
no normal subgroup of order p? and exponent p?, we get |Q;(H)| = pP~L. Since
the H,-chain of G has no index = p?, we get G1 € My, completing the proof
of (b) and thereby the proposition. |

PROPOSITION 14: Suppose that a p-group G has no H,-chains. Let H € My
and let

C=Cy:{l}=Lo<Li<---<L,=H

be an H,-chain in H with iy = io(C) > 0. Write U = L;, and G = G/U. Then
IC| > ip and one of the following holds:

(a) G is absolutely regular. Then exp(G) > p. In that case, Li,11 <
Qi +1(G) and, if |Cg| > io + 1, then exp(Liy+1) = p°Th, Lig41 <
Qy41(G) and Ligr2/Lig11 < Q1(G/Lig11).

(b) G is irregular of maximal class. Then H is either absolutely regular
or irregular of maximal class. ~ (bl) If |G| = pP*!, then all maximal
subgroups of G are absolutely regular so [Q;(G)| = pP~!. In that case,
L;, < Q4 (G).

(b2) Let H be irregular of maximal class. Then |G : H| = p, |Q1(H) =
pP~L |G| < p* and |Cy| = i + 2.

Proof. Write ig = i9(C) and U = L;,. If F//U is normal subgroup of order p?
and exponent p in G/U, then the H,-chain in F' strongly dominates over C,
which is a contradiction. Therefore, G = G /U has no normal subgroup of order
pP and exponent p so it is either absolutely regular or irregular of maximal class
(Lemma 7). Assume that |C| = ip. Take in G' a normal subgroup F of order p.
Then {1} =L; < L1 < --- < L;; = H < F is an H,-chain in F and it strongly
dominates over C, a contradiction. Thus, |C| > o.
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(a) Suppose that G/U is absolutely regular; then exp(G/U) > p (otherwise,
G has an Hp-chain {1} = Ly < L1 < --- < Lj; = U < G). Since L1
has an H,-chain of length ip + 1 and G/L;,+1 is absolutely regular, it follows
that L;;+1 < Qio+1(G) (otherwise, by Lemma 2(b), G has an H,-chain). Next,
suppose that |Cy| > ip + 1. Consider the subgroup W = L;,+2. We have
Qiy11(H) = Liy+1(< H) so exp(Liy+1) = p°Tt. Assume that W/L; 11 =
01 (G/Liy+1). Let © € G — L;y 41 be of minimal order and let o(zL;,+1(G) = p
in G/L;,+1, then, by what has been said already, o(x) < p*! and o € L;, 1.
In that case, by construction, x € W = L;, 2. However, z € Q;,+1(W) = L; 41,
contrary to the choice of x. Thus, W/L; 41 < Q1(G/L;y+1), completing this
case.

(b) Suppose that G = G/U is irregular of maximal class. Then H is either
absolutely regular or of maximal class.

Let |G| = pP*!. If H; < G is of order pP and exponent p, then {1} = Ly <
L1 <---< Ly < H < Gis aHp-chain in G (all indices of that chain, apart of
the last one, equal pP), so, comparing indices of that chain with indices of the
chain C, we get H & My, a contradiction. Thus, all maximal subgroups of G
are absolutely regular so ;(G) = ®(G) is of order p?~! and exponent p. Since
G has no Hp-chain, it follows that L;, < ;,(G) (otherwise, G has an H,-chain,
whose (ip + 1)th member coincides with the inverse image of ;(G) in G, and
the following member is G), completing the proof of (b1).

Now let H be irregular of maximal class; then |G : H| = |G : H| = p. Since H
has no G-invariant subgroup of order p? and exponent p, we get |y (H)| = pP~1
since H has an H,-chain. All remaining assertions follow from Proposition
13. |

Metacyclic p-groups, p > 2, regular so they have an Ha-chain (Theorem 11).
This is not the case for metacyclic 2-groups.

ProprosITION 15: The following conditions for a metacyclic 2-group G of order
> 2% are equivalent:

(a) G has no Ha-chain.

(b) There is k > 0 such that |Q;(G)| = 22 for all i < k and G/Q(G) is of
maximal class and order > 2%.

Proof. Let the set Mg be such as in Propositions 13 and 14. Take H € M,
and let C = Cy be a Ha-chain in H. Set ig = io(C). Then U = L;, = Q;,(G)
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so G/U is of maximal class, by the above and Lemma 2(b). If G/U = Qg, then
{1} < N (G) < < U < Q,4+1(G) < G is an Ha-chain in G, a contradiction.
Now assume that G/U = Dg. Let H/U < G/U be abelian of type (2,2). Then
{1} < Q(G) < -+ < U < H < G is an Hy-chain in G, a contradiction. Thus,
|G/U| > 2% Clearly, |Q;(G)| = 22 for all i < ig.

Let |G/U| > 23. Tt remains to show that G has no Hz-chain. Assume that
C is an Ha-chain as in Definition 1. Since G/U is of maximal class, we get
Qiy12(G) = G s0 Liy12 = G. Since |L; o] < 2283 < 22641 < G we get a
contradiction. ]

SUPPLEMENT TO PROPOSITION 15: Let G be a metacyclic p-group such that
Chs(G) > 1 (see Remark 4). Then p = 2 and there is k such that |Q;(G)| = 2%
and G/Q2;(G) is dihedral of order 8 for all i < k (in the last case, Cha(G) = 2).

This follows easily from the proof of Proposition 15.

PROBLEMS. Below, H > {1} is a normal subgroup of a p-group G.

1. Study the structure of G provided there exists only one Hso-chain in G.

2. Let G be a group of order pP* such that Qx(G) = G. Describe the
structure of G provided exp(G) > p*.

3. Find an algorithm producing all H-chains in abelian p-groups.

4. Classify the 2-groups which have no Hs-chains.

5. Given a natural number k, a chainCy : H = Hy > Hy > --- > H,, = {1}
of G-invariant subgroups is said to be a lower k-admissible chain in H
provided H;_1/H; is of order < p* and exponent p (i = 1,...,n).
The above chain is said to be a lower Hjy-chain in G if, whenever
|H/H;| < p**, then H; = U;(H). (i) Is it true that, whenever H is
a lower pyramidal (see Remark 1), it possesses a lower Hy-chain? (ii)
Study the p-groups without lower H)-chains.

6. Suppose that H is a Ps-subgroup such that all sections of H are pyra-
midal. Is it true that there exists in H an Hjy-chain for any k?

7. Does there exist in H an H,-chain if all sections of H of order pP*! are
P-groups?

8. Suppose that p-groups G and Gy are lattice isomorphic and G has an
Hp-chain. Is it true that also G has an H-chain?
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9. Suppose that a p-group H has an Hy-chain, say C. Now let H <G, where
G is a p-group. Find sufficient conditions for existing an Hy-chain in H
(as a normal subgroup in G).
10. Is it true that the number of Hy-chains in any abelian p-group is con-
gruent with 1 (mod p)?
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