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ABSTRACT

Some sufficient conditions for existence of k-admissible Hall chains

(= Hk-chains) in normal subgroups of finite p-groups are established (for

irregular p-groups we consider only the case k = p). In Propositions 13–15

we study p-groups without Hp-chains, and metacyclic 2-groups with the

above property are classified. Abelian p-groups with exactly one Hk-chain

are characterized in Proposition 12.

This note supplements [H, Theorem 2.5] and [B3, Theorem 1 and Supplement

2 to Theorem 1].

In what follows, G is a finite p-group, p is a prime, m, n, k, t are natural num-

bers and i is a nonnegative integer. We use notation and agreements standard

for finite p-group theory, in particular, the bar convention (see [B2, B3]). We

assume throughout this note that

(∗) H > {1} is a normal subgroup of a p-group G.

We begin with the following definitions.

Definition 1: Given k, let

C : {1} = L0 < L1 < · · · < Ln = H

be a chain (of length |C| = n) of G-invariant subgroups in H such that

exp(Li/Li−1) = p and |Li/Li−1| ≤ pk for i = 1, . . . , n. Then C is called a

k-admissible chain in H . For this C, set i0(C) = max {i ≥ 0 : |Li| = pki}.
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It follows that |Li0(C)+j| < pk(i0(C)+j) for all j > 0. In general, the sequence

{|L1|, |L2 : L1|.|L3 : L2|, . . . } is not monotone as, for k = 2, the metacyclic

group G = 〈a, b | a8 = 1, a4 = b4, ab = a−1〉 shows (for this G, the sequence of

indices of C is 4, 2, 4). We have exp(Li) ≤ pi for all i ≤ n. In the sequel, C is as

in Definition 1.

Definition 2: A k-admissible chain C in H dominates over a k-admissible chain

C1 : {1} = M0 < M1 < · · · < Ms = H

if, with respect to lexicographic ordering, the sequence

{|L1|, |L2 : L1|, . . . , |Ln : Ln−1|}

is greater or equal than the sequence {|M1|, |M1 : M0|, . . . , |Ms : Ms−1|}. In

that case, we write C ≥ C1. If, in addition, |Lt : Lt−1| > |Mt : Mt−1| for some

t, but |Li : Li−1| = |Mi : Mi−1| for all i < t, we write |C| > |C1| (in that case, C

dominates strongly over C1).

In the sequel, C1 is such as in Definition 2.

Definition 3: A k-admissible chain C in H is said to be dominating if, for all

k-admissible chains C1 in H , we have C ≥ C1.

Thus, two k-admissible dominating chains in H have the same sequence of

indices. We also consider k-admissible chains in G-invariant subgroups A < H

and in H/A. There is a k-admissible dominating chain in H always.

Definition 4: A k-admissible chain C in H is said to be a Hall chain (or Hk-chain,

for brevity), if, for all j > 0, we have Li0+j = Ωi0+j(H), where i0 = i0(C).

Let p = 2 and let H be dihedral of order 8; then H has an H2-chain. Now

let H < G, where G is dihedral of order 16. Then there are no H2-chains in H

(as a normal subgroup of G).

If a p-group G has an Hk-chain C and Ω1(G) = G, then all indices of the

chain C except for the last one are equal to pk. Indeed, if |Li| < pki, then

L = Ωi(G) = G so i = n. If H has a G-invariant subgroup R of order pk and

exponent p such that exp(H/R) = p, then H has an Hk-chain.

All p-groups of order p2p and exponent p2 have Hk-chains (notice that p-

groups of maximal class and order p2p, which have no Hp-chains, are of exponent

p3). To prove this, consider the quotient group Ḡ = G/f1(G). Since absolutely
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regular p-groups of order p2p have exponent > p2, we get |Ḡ| ≥ pp so |f1(G)| ≤

pp. It follows that f1(G) is regular. By hypothesis, f1(G) is generated by

elements of order p so exp(f1(G)) ≤ p. Then, by Lemma 6, below, there is

R / G of order pp and exponent p such that f1(G) ≤ R. Then {1} < R < G is

the Hp-chain in G.

If, in Definition 4, Li0+1 < H , then exp(Li0+1) = pi0+1, and so exp(Li) = pi

for all i ≤ n. If i0(C) ≥ n− 1, then a k-admissible dominating chain C must be

an Hk-chain. As Lemma 3(a) shows, Hk-chains are k-admissible dominating,

however, the converse is not true in general. It is asserted in [H, Theorem 2.5]

and [B3, Supplement 1 to Theorem 1] that there exists in H an Hk-chain for

k ≤ p − 1, however, this is not true for k = p (see Remark 3, below). Some

conditions guaranteing existence of Hp-chains in H are stated in Theorem 10.

Theorem 11 shows, in particular, that there is in regular H an Hk-chain for

any k. Proposition 12 asserts that an abelian p-group G has only one Hk-chain

if and only if |Ω1(G)| ≤ pk. In Propositions 13 and 14 we study the p-groups

without Hp-chains. The set M0, introduced there, is an important invariant of

G.

If C and C1 are Hk-chains in H , then Li0+u = Ωi0+u(H) = Mi0+u, where

i0 = i0(C) and u ≥ 1.

Example: Each 2-group of order ≤ 23 has an H2-chain. If G be a 2-group of

maximal class and order ≥ 24 then, by Remark 3, below, G has no H2-chain.

(i) We claim that if a group G of order 24 is not of maximal class, it has an

H2-chain. Indeed, let R / G be abelian of type (2, 2) (R exists, by Lemma

7). If G/R is noncyclic, then {1} < R < G is the desired H2-chain. Now let

G/R be cyclic. If G has a cyclic subgroup of index 2, then R = Ω1(G) and

{1} < R < Ω2(G) < G is the desired H2-chain. If G has no cyclic subgroup

of index 2, then G = C · R, where C is cyclic of order 4. Let U ≤ R ∩ Z(G)

be of order 2 and R1 = U × Ω1(C)(≤ Z(G)); then G/R1 is abelian of type

(2, 2) and so {1} < R1 < G is the desired H2-chain. (ii) A 2-group G of

order > 24 with cyclic subgroup of index 2, which is not of maximal class,

has the unique H2-chain {1} < Ω1(G) < Ω2(G) < · · · < G as follows from

classification of such groups. (iii) We claim that a 2-group G of order 25, which

is not of maximal class, has an H2-chain. In view of (ii), we may assume that

G has no cyclic subgroup of index 2. Let R / G be abelian of type (2, 2). If

H/R < G/R is abelian of type (2, 2), then {1} < R < H < G is an H2-chain.
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Now assume that G/R has no abelian subgroup of type (2, 2). Then G/R is

either cyclic or ∼= Q8, the ordinary quaternion group. (1iii) Let G/R be cyclic.

Then G = Z · R is a semidirect product, where Z is cyclic of order 8. In that

case, the subgroup R0 = R1 × Ω1(Z) / G, where R1 ≤ R ∩ Z(G) is of order 2,

is abelian of type (2, 2) and G/R0 has an abelian subgroup of type (2, 2); then

G has an H2-chain, as above. (2iii) Now let G/R ∼= Q8. If Ω1(G) = R, then

{1} < Ω1(G) < Ω2(G) < G is the unique H2-chain in G. It remains to consider

the case where Ω1(G) = U is elementary abelian of order 8; then exp(G) = 4.

Let F/R < G/R be of order 4; then F = L ·R, where L is cyclic of order 4 and

R ∩ L = {1}. Let K ≤ R ∩ Z(G) be of order 2. Set R1 = K × Ω1(L)(≤ Z(F ));

then R1 / G and {1} < R1 < F < G is the desired H2-chain in G.

It is easy to see that every minimal nonabelian p-group has an Hk-chain for

all k.

We are interested in the following statements concerning a p-group G and all

n:

1. Each element of fn(G) is a pn-th power, i.e., fn(G) = {xpn

: x ∈ G}.

2. exp(Ωn(G)) ≤ pn, i.e., Ωn(G) = {x ∈ G : o(x) ≤ pn}.

3. |Ωn(G)| = |G : fn(G)|.

Definition 5: For i ∈ {1, 2, 3}, a p-group G is called a Pi-group if all sections of

G satisfy condition (i) for all n, and G is called a P-group, if it is a Pi-group

for i = 1, 2, 3 simultaneously.

In his important paper [M], Avinoam Mann has studied the interrelations

between the above defined properties Pi, i = 1, 2, 3, and P in detail. The

following unexpected result holds [M]: P3 ⊂ P2 ⊂ P1 so that P3-groups coincide

with P-groups (however, in what follows, we do not use this deep result). Regu-

lar p-groups are P-groups (Philip Hall). A Sylow 2-subgroup of the Suzuki

simple group Sz(22n+1) satisfies conditions 1–3 but it is not a P3-group since

it has a nonabelian section of order 8, which has no property (3). For p = 2,

the irregular group M2n+1 = 〈x, y | x2n

= y2 = 1, xy = x1+2n−1

, n > 2〉 is a

P-group. For p > 2, Mann [M] constructed an irregular group X of order pp+1

such that |Ω1(X)| = pp (this X is a P-group). All p-groups of maximal class are

P1-groups as follows from [B5]. A p-group of maximal class and order > pp+1

is not a P2-group (see Lemma 5(b), below).
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See [Hup, Kap III] on p-groups with cyclic subgroup of index p, regular p-

groups and p-groups of maximal class

Remark 1: For a P-group G, the following assertions hold:

(i) |Ω1(G)| ≥ |Ω2(G)/Ω1(G)| ≥ |Ω3(G)/Ω2(G)| ≥ · · · ,

(ii) |G/f1(G)| ≥ |f1(G)/f2(G)| ≥ |f2(G)/f3(G)| ≥ · · · .

We have exp(Ω1(G)) = exp(Ω2(G)/Ω1(G)) = p so f1(Ω2(G)) ≤ Ω1(G) and

|Ω1(G)| = |Ω1(Ω2(G))| = |Ω2(G)/f1(Ω2(G))| ≥ |Ω2(G)/Ω1(G)|.

We have, for k > 1, Ωk(G)/Ωk−1(G) = Ω1(G/Ωk−1(G)). Therefore, (i) follows

by induction on k. As to (ii), we have

|G/f1(G)| = |Ω1(G)| ≥ |Ω2(G)/Ω1(G)| =
|G : f2(G)|

|G : f1(G)|
= |f1(G)/f2(G)|.

We suggest to the reader to finish the proof of (ii). The groups satisfying (i)

and (ii), are called upper and lower pyramidal, respectively. Next we prove

that if A < G, then |A/f1(A)| = |Ω1(A)| ≤ |Ω1(G)| = |G/f1(G)| since G is a

P3-group.

We use the following fact freely: if exp(G) = pe, then exp(G/Ω1(G)) ≤ pe−1

since fe−1(G) ≤ Ω1(G).

A p-group G is said to be absolutely regular (Blackburn) if |G/f1(G)| < pp.

By Hall’s regularity criterion [H, Theorem 2.3], absolutely regular p-groups

are regular. All sections of absolutely regular p-groups are absolutely regular

(Remark 1(iii)). All p-groups of class < p (so groups of order ≤ pp) are regular.

According Mann’s letter, G is regular provided G/Z(G) is absolutely regular

(for the proof, see [B1, Remark 7.2]).

For main properties of p-groups of maximal class, which we use in what

follows, see [B5].

Lemma 1: Let F > {1} be a normal subgroup of a p-group G and let K be a

G-invariant subgroup of order p in F . Write Ḡ = G/K.

(a) Suppose that {1̄} = F̄0 < F̄1 < · · · < F̄n = F̄ is an Hp-chain in F̄

such that |F̄i| = ppi for i = 1, . . . , n. If every section of F of order pp+1 has a

characteristic subgroup of order pp and exponent p, then there exists in F an

Hp-chain {1} = L0 < L1 < · · · < Ln < Ln+1 = F such that |Fi : Li| = p for

i = 0, 1, · · · , n so that Ln is of order ppn and exponent ≤ pn.
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(b) Let k be fixed and suppose that all sections of F of order pk+1 are P3-

groups. Suppose that {1̄} = F̄0 < F̄1 < · · · < F̄n = F̄ is an Hk-chain in

F̄ such that |F̄i| = pki for i = 1, . . . , n. Then there exists in F an Hk-chain

{1} = L0 < L1 < · · · < Ln < Ln+1 = F such that |Fi : Li| = p for i = 0, 1, . . . , n

so that Ln is of order pkn and exponent ≤ pn.

Proof. We proceed by induction on |F |.

(a) By hypothesis, F1 is of order pp+1 and F1/K is of order pp and exponent

p. Suppose that F1 is irregular. Then F1 has a characteristic subgroup of order

pp and exponent p, and we denote that subgroup by L1. Now suppose that

F1 is regular. Then f1(F1) ≤ K so |Ω1(F1)| = |F1/f1(F1)| ≥ |F1/K| = pp,

and we conclude that Ω1(F1) is of order ≥ pp and exponent p. In this case,

we take L1 to be an arbitrary G-invariant subgroup of order pp in Ω1(F1). If

F1 = F , we are done, so we let F1 < F . The group F/L1 is an extension of

F1/L1 of order p by F/F1 of order pp(n−1). By induction, there is an Hp-chain

L1/L1 < L2/L1 < · · · < Ln/L1 < F/L1 such that |(Fi/L1) : (Li/L1)| = p for

all i = 2, · · · , n. Then {1} = L0 < L1 < · · · < Ln < F is the desired Hp-chain.1

(b) is proved in the same way as (a).

Lemma 2: Let F = Ωn(H) and let C : {1} = L0 < L1 < · · · < Ln = F be an

Hk-chain of length n in F .

(a) Suppose that C1 : {1} < Ln+1/Ln < Ln+2/Ln < · · · < Ln+m/Ln =

H/Ln, where Ln+i/Ln = Ωi(H/Ln), is an Hk-chain in the quotient

group H/Ln = H/F . Then C2 : {1} = L0 < L1 < Ln = F <

Ln+1 < · · · < Ln+m = H is an Hk-chain in H .

(b) If, in addition, k = p and H/F is absolutely regular, then the chain C2

from (a) is an Hp-chain.

Proof. (b) follows from (a) immediately since H/F has an Hp-chain with

Ln+i/Ln = Ωi(H/Ln). It remains to prove (a).

One may assume that F < H ; then exp(H) > pn so, since exp(F ) cannot be

> pn, we get exp(F ) = pn. For j ≤ n, we have Ωj(F ) = Ωj(Ωn(H)) = Ωj(H).

To prove that C2 is an Hk-chain, it suffices to show that Ln+i = Ωn+i(H) for

i ≤ m. Take x ∈ H with o(x) ≤ pn+i. We have to prove that x ∈ Ln+i. It

follows from F = Ln = Ωn(H) and exp(Ln) = pn that 〈x〉 ∩ Ln = Ωn(〈x〉) so

(in H/Ln) we have o(xLn) ≤ pi, and hence xLn ∈ Ωi(H/Ln) = Ln+i/Ln.

1 The same conclusion holds if every irregular section of F of order pp+1 is an P3-group.
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Lemma 3: Suppose that there is an Hk-chain C (as in Definition 1) in H . Then

(a) C is a k-admissible dominating chain,

(b) all k-admissible dominating chains in H are Hk-chains.

Proof. Suppose that all considered chains are k-admissible.

(a) Let C1 (as in Definition 2) be a dominating chain in H . We have to

prove that |Li| = |Mi| for all i. Let t be such that |Mt| < pkt. We have

|Lt| ≤ |Mt| < pkt so Lt = Ωt(H) since C is an Hk-chain. Since exp(Mt) ≤ pt,

we get Mt ≤ Ωt(H) = Lt so Lt = Mt. Next assume that |Ls| < pks; then

Ls = Ωs(H) ≥ Ms so, since the chain C1 is dominating, we get Ms = Ls. Now

let |Mu| = ppu. Then, by the above, |Lu| = ppu, completing the proof of (a).

(b) Let C1 be a dominating chain in H ; we have to show that C1 is also an

Hk-chain. By (a), the chain C is dominating so |Li| = |Mi| for all i, and we get

i0 = i0(C) = i0(C1). Since C is an Hk-chain and exp(Mi0+u) ≤ pi0+u, we get

Li0+u = Ωi0+u(H) ≥ Mi0+u for all u > 0 so Mi0+u = Ωi0+u(H) = Li0+u| since

C1 is dominating, and we are done.

The point of Lemma 3(b) is that if we want to prove that all k-admissible

dominating chains in H are Hk-chains, it suffices to show that at least one of

these chains is an Hk-chain.

Lemma 4: Let C be a k-admissible dominating chain in H . Set Ḡ = G/L1.

Then C : {1̄} < L̄2 < · · · < L̄n = H̄ is a k-admissible dominating chain in H̄ .

Proof. Indeed, suppose that C1 is a k-admissible dominating chain in H̄ and

assume that C1 > C; then the chain C1, which is the ‘inverse image’ of the chain

C1, is k-admissible and satisfies C1 > C, a contradiction.

If C is a k-admissible dominating chain in Ḡ = G/N , where N is of order

pk and exponent p, then its inverse image C is k-admissible but can be not

dominating in G. Indeed, let G = U × V × W , where U, V and W are cyclic

of orders p, p, p2, respectively. Let k = 2 and L1 = U × V , Ḡ = G/L1. Then

the chain C with Li = L1 × Ωi−1(W ), i = 1, 2, 3, is not an H2-chain in G

although {1̄} < L̄2 < L̄3 = Ḡ is an H2-chain in the cyclic p-group Ḡ. Indeed,

if M1 = U × Ω1(W ) and M2 = G, then the chain C1 : {1} < M1 < M2 = G

dominates over C.
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Lemma 5: Let G be an irregular p-group of maximal class. Then all sections

of G of order pp+1 are P3-groups (P2-groups) if and only if |G| = pp+1 and

|Ω1(G)| = pp (Ω1(G) < G).

Lemma 5 follows easily from Blackburn’s theory of p-groups of maximal class

(see [B5]).

Proof. Assume that |G| > pp+1; then G/Kp+1(G), where Kp+1(G) is the

(p + 1)-st member of the lower central series of G, is neither P3- no P2-group.

It remains consider the case |G| = pp+1. If G is a P3-group, then |Ω1(G)| =

|G/f1(G)| = pp. Next, G is a P2-group if and only if Ω1(G) < G.

Lemma 6: If H has a G-invariant subgroup B of order pp and exponent p, then

each maximal G-invariant subgroup of H of exponent p is of order ≥ pp.

Proof. Let A be a maximal G-invariant subgroup of exponent p in H . We have

to prove that |A| ≥ pp. Assume that this is false; then A 6≤ B. Let R ≤ B be

the least G-invariant subgroup such that R 6≤ A. Then |A| < |AR| = p|A| ≤ pp

so AR is regular. It follows from Ω1(AR) = AR that exp(AR) = p, contrary

to the choice of A. (Similarly, under hypothesis of Lemma 6, every maximal

subgroup of exponent p in H has order ≥ pp.)

Lemma 7 (B2, §7, Remark 2): Suppose that the p-group G is neither absolutely

regular nor of maximal class. Then the number of subgroups of order pp and

exponent p in G is ≡ 1 (mod p) (so G has a normal subgroup of order pp and

exponent p).

Let G be a p-group. Set f
1(G) = f1(G). If f

i(G) has been defined, we set

f
i+1(G) = f1(f

i(G)). Since exp(G/f
k(G)) ≤ pk, we get fk(G) ≤ f

k(G) for

all k. If G is a P-group of exponent pe, then f
i(G) = fi(G) for all i.

Lemma 8: Let |G| = pm, exp(G) ≤ pe and m ≤ ke.

(a) If G is lower pyramidal, then f
e−1(G) is of order ≤ pk, and if

m < ke, then |fe−1(G)| < pk. If, in addition, G is a P2-group, then

exp(fe−1(G)) ≤ p.

(b) If k = p, then f
e−1(G) is either absolutely regular or of order pp and

exponent ≤ p. In either case, fe−1(G)(≤ f
e−1(G)) is of exponent p.

If, in addition, m < pe, then we have |Ω1(f
e−1(G))| < pp so fe−1(G)

is of order ≤ pp−1 and exponent p.
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Proof. (a) is obvious (the last assertion is true since fe−1(G) ≤ Ω1(G)). For

the proof of (b), see [B4, Lemmas 4, 6].

The following two assertions hold. (a) Let G be an absolutely regular p-group.

If |G| > p(p−1)k, then exp(G) > pk. (b) Now let G be a p-group of maximal

class and order pm, m > p + 1. If m − 1 = (p − 1)k, then exp(G) = pk. If

m − 1 > (p − 1)k, then exp(G) > pk. Assertion (a) follows since absolutely

regular p-groups are pyramidal (Remark 1). As to (b), a p-group G of maximal

class has an absolutely regular subgroup G1 of order pm−1, and exp(G1) =

exp(G) [B5]; so the result follows from (a).

Lemma 9: (a) Let H be of order ppe and exponent ≤ pe. Then all indices of

any p-admissible dominating chain in H equal pp.

(b) Let H be a pyramidal (see Remark 1) P2-subgroup of order pke and

exponent ≤ pe. Then all indices of any k-admissible dominating chain in H

equal pk.

Proof. One may assume that e > 1. We use induction on |H |.

(a) By the paragraph preceding the lemma, H is neither absolutely regular nor

of maximal class. Therefore, by Lemma 7, H has a G-invariant subgroup, say R,

of order pp and exponent p. Suppose that exp(H) ≤ pe−1. Then exp(H/R) ≤

exp(H) ≤ pe−1 and |H/R| = pp(e−1). Therefore, by induction, there is in H/R

an Hp-chain {1} = R/R = T1/R < T2/R < · · · < Te/R = H/R, and all

indices of this chain are equal to pp. In that case, {1} < T1 < · · · < Te = H

is the desired Hp-chain. Therefore, one may assume, in what follows, that

exp(H) = pe. In that case, fe−1(H) is of order ≤ pp and exponent ≤ p

(Lemma 8(b)) so fe−1(H) ≤ R, where R < H is a G-invariant subgroup of

order pp and exponent p (Lemma 6). Then H/R is a normal subgroup of order

pp(e−1) and exponent ≤ pe−1 in G/R. By induction, there exists an Hp-chain

{1} = R/R = L1/R < L2/R < · · · < Le/R = H/R in H/R such that all indices

of this chain equal pp, and so {1} < R = L1 < L2 < · · · < Le = H is the desired

Hp-chain.

(b) As in (a), one can assume that exp(H) = pe. Since H is lower pyramidal,

|fe−1(H)| ≤ pk. Since fe−1(H) is generated by elements of order ≤ p and

H is a P2-group, we get exp(fe−1(H)) ≤ exp(Ω1(H)) = p. Since H is upper
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pyramidal, we get |Ω1(H)| ≥ pk. Let fe−1(H) ≤ R ≤ Ω1(H), where R is G-

invariant of order pk. Then H/R is of order pk(e−1) and exponent ≤ pe−1. Now

the result follows by induction in H/R, as in (a).

Remark 2: Let H be a normal subgroup of order ≤ pke and exponent pe in a

p-group G. Suppose that there exists an Hk-chain C in H (as in Definition 1).

We claim that then n = e. Indeed, this is trivial for e = 1 so we let e > 1.

Clearly, n ≥ e. Assume that n > e. Then |Ln−1| < |H | ≤ pke ≤ pk(n−1) so

Ωn−1(H) = Ln−1 < H since C is an Hk-chain. It follows that exp(Ln−1) =

pn−1 ≥ pe, a contradiction, since Ωn−1(H) = H .

Let G be a group of order pm possessing an Hk-chain, say C : {1} = L0 <

L1 < · · · < Li0 < · · · < Ln = G. Let m = [m/k]k + s, where s < k. Assume

that |Ωt(G)| ≥ pkt for all t ≤ [m/k]. We claim that then i0 = i0(C) = [m/k],

where [x] is the integer part of the real number x. Clearly, i0 ≤ [m/k]. Assume

that i0 < [m/k]. Then |Ωi0+1(G)| < pk(i0+1) so, since i0 + 1 ≤ [m/k], we get

|Ω[m/k](G)| < p[m/k]k, contrary to the assumption. Otherwise, i0(C) equals such

t that |Ωt(G)| ≥ pkt and |Ωt+1(G)| < pk(t+1).

Let C be an Hk-chain of length n in H with i0 = i0(C). Suppose that

exp(Li0) < pi0 . We claim that then n ≤ i0 + 1. Assume that n > i0 + 1.

We have exp(Li0+1) < pi0+1. Since Ωi0+1(H) = Li0+1 < H , it follows that

exp(Li0+1) = pi0+1, contrary to what has just been said.

Remark 3: Let G be an irregular p-group of maximal class. (i) If G has an

Hp-chain, then either |G| = pp+1 or pp+1 < |G| < p2p and |Ω1(G)| = pp−1. (ii)

Conversely, if |Ω1(G)| = pp−1 and |G| < p2p, then G has the unique Hp-chain

{1} < Ω1(G) < G of length 2. Let us prove these assertions using [B5]. Let C be

an Hp-chain in G and assume that |G| > pp+1. Since G has no normal subgroup

of order pp and exponent p, we get |Ω1(G)| = pp−1. Since |L2| < p2p, we get

L2 = Ω2(G). Since Ω2(G) = G [B2, Remark 7.8], we have |G| < p2p. In that

case, exp(G/L1) = p is of order ≤ pp and exponent p so C : {1} < Ω1(G) < G.

Next, any group G of order pp+1 has an Hp-chain. This is obvious if G is

regular [Hup, §III.14]. If G is irregular, Φ(G) is of order pp−1 and exponent p.

If Ω1(G) = Φ(G), then {1} < Φ(G) < G is an Hp-chain. If Ω1(G) > Φ(G),

then G has a maximal subgroup M of exponent p; then {1} < M < G is an

Hp-chain. Now assertion (ii) is obvious. (Any regular p-group of maximal class

has an Hk-chain; see [Hup, §III.14] or Theorem 11, below.)
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Theorem 10: Let H > {1} be a normal P2-subgroup of a p-group G. Suppose,

in addition, that every irregular section of H of order pp+1 has a characteristic

subgroup of order pp and exponent p. Then there exists in H a chain C : {1} =

L0 < L1 < · · · < Ln = H of G-invariant subgroups with the following properties

(i = 1, . . . , n):

(a) Li/Li−1 is of order ≤ pp and exponent p, and

(b) either |Li| = ppi or else Li = Ωi(H).

In other words there is in H an Hp-chain. Then it follows from Lemma

3(b) that each p-admissible dominating chain in H is an Hp-chain. If, in our

theorem, p = 2, then the subgroup H is powerful, i.e., H/f2(H) is abelian [LM].

To prove this, we suppose that H is a minimal counterexample. By hypothesis,

all sections of H of order 8 are abelian so H is also modular (Iwasawa). One

may assume that exp(H) = 4. Then H is minimal nonabelian so |H | ≤ 25.

It follows from Redei’s classification of minimal nonabelian 2-groups that H

has a nonabelian epimorphic image of order 8, a contradiction. It follows from

properties of powerful p-groups that H is pyramidal. In what follows, however,

we do not use the above results. Also notice that if U is an irregular section of

G of order pp+1, then |Ω1(U)| = |U/f1(U)| = pp.

Proof. If {1} < N ≤ H is G-invariant, then the pairs H/N ≤ G/N and N ≤ G

satisfy the hypothesis. We proceed by induction on |H |. Let exp(H) = pe. One

may assume that e > 1. Obviously, all G-invariant sections of H satisfy the

hypothesis.

(i) Suppose that H has no G-invariant subgroup of order pp and exponent p.

Then H is either absolutely regular so {1} = Ω0(H) < Ω1(H) < · · · < Ωe(H) =

H is an Hp-chain in H , or irregular of maximal class and order pp+1 (Lemmas

7 and 5); in the last case, H must have a characteristic subgroup M of order

pp and exponent p, contrary to the assumption.

In what follows we assume that H has a G-invariant subgroup of order pp

and exponent p. Let F0 < H be a G-invariant subgroup of order p and set

Ḡ = G/F0. By induction, there exists an Hp-chain

C
′
: {1̄} = F̄0 < F̄1 < · · · < F̄n = H̄

in H̄ . Write i0 = i0(C
′
). By Lemma 1, there exists an Hp-chain

C′′ : {1} = L0 < L1 < · · · < Li0 < Fi0
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in Fi0 with |Fi0 : Li0 | = p, so that

(α) Fi0 contains a G-invariant subgroup Li0 of order ppi0 and exponent ≤ pi0 ,

i0 > 0.

One may assume that i0 < n (otherwise, C′′ is the desired chain) so Fi0 <

Fi0+1. Next, H/Fi0(
∼= H̄/F̄i0) has no G-invariant subgroup of order pp and ex-

ponent p (otherwise, if U/Fi0 ≤ H/Fi0 is such a subgroup, then the p-admissible

chain {1̄} = F̄0 < F̄1 < · · · < F̄i0 < Ū < · · · < H̄ dominates strongly over C
′
,

contrary to Lemmas 4 and 3(a)). Therefore, by Lemma 7, H/Fi0 is either ab-

solutely regular or irregular of maximal class. Assume that H/Fi0 is irregular

of maximal class. Then |H/Fi0 | > pp+1 (otherwise, H/Fi0 has a G-invariant

subgroup M/Fi0 of order pp and exponent p, contrary to what has just been

said). In that case, H/Fi0 has a subgroup K/Fi0 of maximal class and order

pp+1 [B5]. By hypothesis, K/Fi0 has a characteristic subgroup L/Fi0 of order

pp and exponent p. Then N/Fi0 = NH/Fi0
(L/Fi0) is of maximal class [B5]

and order > pp+1; then L/Fi0 ≤ Φ(H/Fi0) so L/Fi0 is absolutely regular, a

contradiction. Thus, H/Fi0 is absolutely regular so H/Li0 is regular, by the

paragraph following Remark 1. We have:

(β) H/Fi0 is absolutely regular, H/Li0 is regular and |Ω1(H/Li0)| ≤ p ·

|Ω1(H/Fi0)| ≤ p · pp−1 = pp, and so

(γ) If j ≥ i0 + 1, then |Fj | = p|F̄j | ≤ ppj .

Since C
′
is an Hp-chain, Ωi0+1(H̄) = F̄i0+1, so, by [B3, Remark 3],

(δ) Ωi0+1(H) ≤ Fi0+1 hence Ωi0+1(H) = Ωi0+1(Fi0+1) so, if Fi0+1 < H , then

exp(F̄i0+1) ≥ pi0+1.

Since exp(F̄i) ≤ pi, we get exp(Fi) ≤ p · exp(F̄i) ≤ pi+1 for all i so

(ε) exp(Fi0+1) ≤ pi0+2.

Suppose that i0 = 0. In that case, as in the paragraph following (α), H̄ is

absolutely regular. Then F̄1 = Ω1(H̄) is of order < pp, by (δ), so F1 = Ω1(H)

must be of order pp and exponent p since, by the assumption, H has a G-

invariant subgroup of order pp and exponent p, and H/Ω1(H) = H/F1
∼= H̄/F̄1

is absolutely regular, by (β). In this case, by Lemma 2(b), there exists an

Hp-chain in H .

Next we let i0 > 0; then |F1| = pp+1 and exp(F1) ≤ p2.

(ii) Let exp(Fi0+1) < pi0+1. Then, by (δ), Fi0+1 = H so i0 + 1 = n. We also

have |H | = |Fi0+1| ≤ pp(i0+1). Let {1} = L0 < L1 < · · · < Li0 < Fi0 be an
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Hp-chain in Fi0 with |Fi0 : Li0 | = p and all other indices of our chain equal pp

(Lemma 1).

If exp(H/Li0) = p, then {1} = L0 < L1 < · · · < Li0 < H is an Hp-chain in H

since all indices of this chain but last one are equal to pp. Since exp(H/Li0) ≤ p2,

one may assume that exp(H/Li0) = p2. Therefore, since H/Fi0(= Fi0+1/Fi0) is

of order ≤ pp−1 and exponent p, the G-invariant subgroup U/Li0 = Ω1(H/Li0)

is of exponent p and index p in (the regular) group H/Li0 . In that case, {1} =

L0 < L1 < · · · < Li0 < U is an Hp-chain in U since only the last index

of this chain is < pp. Since exp(H/Fi0) = p and |H/Fi0 | ≤ pp−1, we get

f1(H) < Fi0 : H is not absolutely regular in view of i0 > 0. It follows that

|f1(H)| ≤ p−p · |H | ≤ ppi0 . Therefore, there exists a G-invariant subgroup Ti0

satisfying f1(H) ≤ Ti0 < Fi0 and |Ti0 | = ppi0 . Since, in addition, we have

exp(Ti0) ≤ exp(H) = exp(Fi0+1) ≤ pi0 , there exists an Hp-chain {1} = T0 <

T1 < · · · < Ti0 in Ti0 of length i0 and all indices of this chain equal pp (Lemma

9(a)). Then {1} = T0 < T1 < · · · < Ti0 < H is an Hp-chain in H since

|H/Ti0 | ≤ pp and exp(H/Ti0) = p.

(iii) Let exp(Fi0+1) = pi0+1. By (δ), Ωi0+1(H) = Fi0+1, and H/Fi0+1 is

absolutely regular, by (β).

Suppose that Fi0+1 < H . To prove that there is an Hp-chain in H , it suffices

to show, in view of Lemma 2(b), that Fi0+1 has an Hp-chain of length i0 + 1.

Let U = Ωi0(Fi0+1)(= Ωi0(H)); then exp(U) = pi0 since H is a P2-group

and exp(Fi0+1) = pi0+1. Since Li0 ≤ U , we get |U | ≥ |Li0 | = ppi0 . We have

exp(Fi0+1/U) = p since the P2-group Fi0+1/U is generated by elements of order

p. It follows that f1(Fi0+1) ≤ U . Since i0 > 0, we get |Fi0+1/f1(Fi0+1)| ≥ pp so

|f1(Fi0+1)| ≤ p−p|Fi0+1| ≤ ppi0 . It follows that there is a G-invariant subgroup

Ti0 of order ppi0 such that f1(Fi0+1) ≤ Ti0 ≤ U ; then exp(Ti0) ≤ exp(U) = pi0 .

By Lemma 9(a), there is an Hp-chain {1} = T0 < T1 < · · · < Ti0 in Ti0 of

length i0, and all indices of that chain equal pp. Then {1} = T0 < T1 < · · · <

Ti0 < Fi0+1 is an Hp-chain in Fi0+1 of length i0 + 1 since exp(Fi0+1/Ti0) = p

and |Fi0+1/Ti0 | ≤ pp.

Now we let Fi0+1 = H ; then exp(H) = pi0+1 and ppi0 = |Li0 | < |H | ≤

pp(i0+1). Write U = Ωi0(H); then as in the previous paragraph, exp(U) =

pi0 , exp(H/U) = p and |U | ≥ |Li0 | = ppi0 so |H : U | ≤ pp. Then there is

a G-invariant subgroup Ti0 of order ppi0 such that f1(H) ≤ Ti0 ≤ U since

|H : f1(H)| ≥ pp: H is not absolutely regular. We have exp(Ti0) ≤ exp(U) =

pi0 and exp(H/Ti0) = p. Therefore, if C′ : {1} = T0 < T1 < · · · < Ti0 is an
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Hp-chain in Ti0 all of whose indices equal pp (Lemma 9(a)), then {1} = T0 <

T1 < · · · < Ti0 < H is an Hp-chain in H since |H/Ti0 | ≤ pp.

(iv) It remains to consider, in view of (ε), the case exp(Fi0+1) = pi0+2; then

exp(Fi0 ) = pi0+1 since exp(Fi0) ≤ pi0+1 and pi0+2 = exp(Fi0+1) ≤ p · exp(Fi0 ).

By (δ), Ωi0+1(H) = Ωi0+1(Fi0+1). By (γ), |Fi0+1| ≤ pp(i0+1).

(1iv) First suppose that Fi0+1 < H . Let C′ : {1} = L0 < L1 < · · · <

Li0 < · · · < Fi0+1 be an Hp-chain in Fi0+1 existing by induction. As

in the paragraph following (α), H/Fi0 is absolutely regular so H/Li0

is regular and Ω1(H/Li0) is of order ≤ pp (see (β)). We have Li0+1 =

Ωi0+1(Fi0+1)(= Ωi0+1(H)) since C′ is an Hp-chain. Also, Li0+1 < Fi0+1

in view of exp(Li0+1) = pi0+1 < pi0+2 = exp(Fi0+1). Next, Li0+1/Li0 =

Ω1(H/Li0) (indeed, if D/Li0 = Ω1(H/Li0), then exp(D) ≤ pi0+1 so

D ≤ Ωi0+1(H) = Ωi0+1(Fi0+1) = Li0+1), so Fi0 ≤ Li0+1. It follows

that H/Li0+1 is absolutely regular as an epimorphic image of H/Fi0

(see (β)). In that case, there is an Hp-chain in H since {1} = L0 <

L1 < · · · < Li0 < Li0+1 is an Hp-chain in Li0+1 = Ωi0+1(H) of length

i0 + 1 (Lemma 2(b)).

(2iv) Now let Fi0+1 = H ; then |H | ≤ pp(i0+1) and exp(H) = pi0+2. Set U =

Ωi0+1(H); then exp(U) = pi0+1 since H is a P2-group, exp(H/U) = p

as above, and U contains a G-invariant subgroup Li0 of order ppi0 and

exponent pi0 . By induction, there is in U an Hp-chain, say C′ : {1} =

K0 < K1 < · · · < Ki0 < · · · < U . We have Ki0+1 = Ωi0+1(U) = U

so |C′| = i0 + 1. It follows that {1} = K0 < K1 < · · · < Ki0 <

Ki0+1 = U < H is an Hp-chain in H since H/U is of order < |H/Li0 | ≤

pp and exponent p. This completes the proof of (iv) and thereby the

theorem.

It is worthwhile to notice that if G is an irregular P3-group of order pp+1,

then Ω1(G) is its characteristic subgroup of order pp and exponent p.

The proof of Theorem 10 does not work if we suppose from the start that

H = G (however, the theorem is true for H = G). Indeed, then we cannot use

induction in proper normal subgroups of G.

Theorem 11: Let H > {1} be a normal P-subgroup of a p-group G and let k

be fixed. Then there exists in H a chain C : {1} = L0 < L1 < · · · < Ln = H of

G-invariant subgroups with the following properties (i = 1, . . . , n):
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(a) Li/Li−1 is of order ≤ pk and exponent p, and

(b) either the order of Li is exactly pik, or else Li = Ωi(H).

In other words, there is an Hk-chain in G. As we have noticed, the theorem

is known for k ∈ {p − 1, p}.

Proof. We proceed by induction on |H |. Set exp(H) = pe and assume that

e > 1 and k > 1.

(i) Suppose that H has no G-invariant subgroup of order pk and exponent p.

Then |Ω1(H)| < pk since H is a P2-group. Since H is pyramidal (Remark 1)

and P2-group, {1} < Ω1(H) < · · · < Ωe(H) = H is the unique Hk-chain in H .

In what follows we assume that H has a G-invariant subgroup of order pk and

exponent p so, since H is a P3-group, we get |H : f1(H)| = |Ω1(H)| ≥ pk.

(ii) If H is of order ptk with t ≥ e, then the theorem is true, by Lemma 9(b).

(iii) Suppose that H is of order ptk+s with t ≥ e and 1 ≤ s < k;

then |f1(H)| ≤ p−k · |H | < ptk since H is a P3-group, by hypothesis. There-

fore, there is a G-invariant subgroup U < H of order ptk such that f1(H) <

U . We have exp(U) ≤ pe ≤ pt so, by Lemma 9(b), there is an Hk-chain

{1} = U0 < U1 < · · · < Ut = U of length t; since all indices of that chain are

equal to pk and H/U is of order < pk and exponent p, it follows that {1} =

U0 < U1 < · · · < Ut < H is an Hk-chain in H .

(iv) Suppose that |Ωt(H)| = ptk for some t ≤ e. If t = e, then there is an Hk-

chain in H (Lemma 9(b) and Remark 1). Now let t < e; then exp(Ωt(H)) = pt.

By Lemma 9(b), there is an Hk-chain {1} = L0 < L1 < · · · < Lt = Ωt(H)

of length t in Ωt(H). Set Ḡ = G/Lt. By induction, there is an Hk-chain

{1̄} < L̄t+1 < · · · < L̄t+m = H̄ in H̄. Then, by Lemma 2(a), {1} = L0 <

L1 < · · · < Lt < Lt+1 < · · · < Lt+m = H is an Hk-chain in H .

(v) Suppose that |Ωt(H)| > ptk for all t ≤ e. In particular, |H | > pek. Then

|H | = pt0k+s for some integers t0 and s < k. It follows that pek < |H | = pt0k+s

so t0 ≥ e. As we have noticed, |H : f1(H)| ≥ pk. Let Ut0/f1(H) be a G-

invariant subgroup of index ps in H/f1(H); then |Ut0 | = pt0k and exp(Ut0) ≤

pe ≤ pt0 . By Lemma 9(b), there is an Hk-chain {1} = U0 < U1 < · · · < Ut0

in Ut0 with all indices equal pk; then {1} = U0 < U1 < · · · < Ut0 < H is an

Hk-chain in H .

(vi) Suppose that |Ωt(H)| < ptk for some positive t ≤ e. Let t be minimal

subject to that inequality. Then t > 1 since H has a G-invariant subgroup

of order pk and exponent p. By the choice of t, we get |Ωt−1(H)| ≥ p(t−1)k.
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In view of (iv), one may assume that |Ωt−1(H)| > p(t−1)k. It follows that

|Ωt(H)/Ωt−1(H)| < pk−1 so that |Ω1(H/Ωt−1(H))| < pk−1 (indeed, if

A/Ωt−1(H) ≤ H/Ωt−1(H) is of order pk−1 and exponent p, then A ≤ Ωt(H) and

A is of order ≥ ptk > |Ωt(H)|, which is not the case). Thus, the pyramidal quo-

tient group H/Ωt−1(H) (Remark 1) has no normal subgroup of order pk and ex-

ponent p. So, setting Ḡ = G/Ωt(H), we conclude that {1̄} < Ω1(H̄) < · · · < H̄

is an Hk-chain in H̄ . Therefore, in view of Lemma 2(a), it suffices to prove

that there is in Ωt(H) an Hk-chain of length t. Assume that this is false; then

the length of our chain is > t so let {1} = T0 < T1 < · · · < Tt < · · · < Ωt(H)

be an Hk-chain in Ωt(H). Since |Tt| < |Ωt(H)| < ptk, it follows that Tt =

Ωt(Ωt(H)) = Ωt(H), which is a contradiction.

Since all possibilities for Ωt(H) are considered, the proof is complete.

It is possible to prove Theorem 10 in the same way as Theorem 11 but the

presented proof is shorter. However, the argument in the proof of Theorem 10

is more universal since it also proves [B3, Theorem 1], which is not the case for

argument in the proof of Theorem 11.

Let G be an arbitrary p-group of order pn. Then W = G×E, where E is the

elementary abelian p-group of order pn(k−1), has a chain of normal subgroups

of length n all of whose factors are of order pk and exponent p.

Let G be an abelian p-group of exponent pe > p. We claim that G is homo-

cyclic if and only if fe−1(G) = Ω1(G). Suppose that the last equality holds.

Set |Ω1(G)| = pd. Then G = Z1 × · · · × Zd, where Zi are all cyclic. In that

case, fe−1(G) = fe−1(Z1)× · · · ×fe−1(Zd) is of order pd so |fe−1(Zi)| = p. It

follows that |Zi| = pe for all i, hence G is homocyclic. The converse assertion

is obvious.

Remark 4: Given a normal subgroup H in G, let Chk(H) be the number of

Hk-chains in H . We claim that if C : {1} = L0 < L1 < · · · < Ln = G

is an Hk-chain in G, then Chk(G) ≥ Chk(Lj) for all j ≤ n. Assume that

{1} = M0 < M1 < · · · < Mj = Lj is an Hk-chain in Lj. Then C′ : {1} = M0 <

M1 < · · · < Mj = Lj < Lj+1 < · · · < Ln = G is an Hk-chain. This is true for

j ≤ i0. Now let j > i0. Let i0 < i2 ≤ j. Then Mi2 = Ωi2(Mj) = Ωi2(Lj) =

Ωi2(Ωj(G)) = Ωi2(G) so C′ is an Hk-chain in G, and we are done.

Proposition 12: An abelian p-group G has exactly one Hk-chain if and only

if |Ω1(G)| ≤ pk.
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Proof. If |Ω1(G)| ≤ pk, then {1} < Ω1(G) < · · · < Ωe(G) = G (exp(G) = pe) is

the unique Hk-chain in the pyramidal group G.

It remains to prove that if G has exactly one Hk-chain, then |Ω1(G)| ≤ pk.

Assume that G is a counterexample of minimal order, then k > 1, e > 1

and |Ω1(G)| > pk. By Theorem 11, there is in G an Hk-chain C : {1} <

L1 < · · · < Ln = G, and this chain is unique, by hypothesis. By assumption,

|L1| = pk. In view of Remark 4, each member Lj of the chain C has exactly one

Hk-chain so, by induction, |Ω1(Lj)| = pk for 1 ≤ j < n. Set i0 = i0(C).

Suppose that n > i0 +1. Then Ωi0+1(G) = Li0+1 < G so Ω1(G) < Li0+1. By

induction, |Ω1(Li0+1)| = pk, a contradiction since Ω1(G) = Ω1(Li0+1). Thus,

n ≤ i0 + 1.

Write Ḡ = G/L1. If C1 is an Hk-chain in Ḡ, then its inverse image C1 in G

is also an Hk-chain in G. Indeed, i0(C1) = i0(C) = i0 − 1 so all indices of the

chain C1 apart for possibly the last one, are equal to pk, and our claim follows.

We conclude that C : {1̄} < L̄2 < · · · < L̄n = Ḡ is the unique Hk-chain in Ḡ

(Lemma 4) so |Ω1(Ḡ)| ≤ pk. It follows that Ω1(Ḡ) = L̄2 so Ω1(G) ≤ L2; then

Ω1(G) = Ω1(L2).

Assume that L2 < G. Since L2 has only one Hk-chain (Remark 4), we get,

by induction, |Ω1(L2)| = pk so |Ω1(G)| = pk, contrary to the assumption.

Now let L2 = G. Then |G| = |L1||L2/L1| ≤ p2k, pk < |Ω1(G)| = |G/f1(G)|

and f1(G) ≤ Ω1(G). It follows that |f1(G)| < pk. Let f1(G) < M1 < Ω1(G),

where |M1| = pk. Since there are > 1 possibilities to choose M1, one may

assume from the start that M1 6= L1. Then C′ : {1} < M1 < G is an Hk-chain

in G and C′ 6= C, a final contradiction.

Let p > 3 and let P be a Sylow p-subgroup of the symmetric group of degree

p2. Set G = P/f1(P ). Let H be the unique abelian subgroup of index p in G

and k > 1 a proper divisor of p− 1. Then there is only one Hk-chain in H and

Ω1(H) = H is of order |Ω1(H)| = |H | = pp−1 > pk.

Supplement 1 to Proposition 12: Let H / G be abelian such that all sub-

groups of H are normal in G. There is exactly one Hk-chain in H if and only

if |Ω1(H)| ≤ pk.

Supplement 2 to Proposition 12: If G is an abelian p-group with |Ω1(G)| >

pk, then Chk(G) ≥ p + 1 (see Remark 4).
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Proof. Suppose that G is a counterexample of minimal order. Let C be an

Hk-chain in G. Then, by Remark 4, we must have Chk(Lj) = 1 for all j < n.

Assume that n > i0 +1. Then Li0+1 = Ωi0+1(G) < G so Ω1(G) = Ω1(Li0+1).

Since Chk(Li0+1) = 1, we get |Ω1(Li0+1)| = pk (Proposition 12), which is not

the case.

Thus, n ≤ i0 + 1. It follows from the proof of Proposition 12 that Chk(G) ≥

Chk(G/L1) so Chk(G/L1) = 1, by induction. By Proposition 12, |Ω1(G/L1)| ≤

pk so Ω1(G/L1) = L2/L1, and we conclude that Ω1(G) = Ω1(L2). If L2 < G,

then Chk(L2) = 1 so |Ω1(L2)| = pk (Proposition 12), contrary to the assump-

tion.

We conclude that L2 = G. Then |G| ≤ p2k and, as in the proof of Proposition

12, |f1(G)| < pk. If f1(G) < M1 < Ω1(G) is such that |M1| = pk, then

{1} ≤ M1 < G is an Hk-chain in G. Since the number of possibilities for the

choice of M1 is ≥ p + 1, we get Chk(G) ≥ p + 1 (Remark 4), and G is not a

counterexample.

It is interesting to classify the abelian p-groups G with Chk(G) = p + 1. It

follows from the proof of the previous supplement that then |f1(G)| = pk−1

and |Ω1(G)| = pk+1.

Remark 5: Let us show that, for a nonabelian p-group G, Ch1(G) = p + 1

if and only if G is of maximal class. Clearly, if G is of maximal class, then

Ch1(G) = p + 1. Now, supposing that Ch1(G) = p + 1, we prove by induction

on G that G is of maximal class. Set |G| = pm. The assertion holds for m = 3;

so assume that m > 3. Every H1-chain in G is not more than a principal series

of G. It follows that |G/G′| = p2 so Z(G) ≤ G′. Each normal subgroup of G

is a member of some H1-chain. We conclude that G′ has only one G-invariant

subgroup of order p which we denote by R1. Since m > 3 and |G/G′| = p2,

G/R1 is nonabelian. Obviously, Ch1(G/R1) = p + 1 so, by induction, G/R1

is of maximal class, and we have |Z(G/R1)| = p. It remains to show that

|Z(G)| = p. Assume that this is false. Then |Z(G)| = p2 and Z(G) is cyclic

(otherwise, Ch1(G) ≥ (p + 1)2 > p + 1). Since G is not of maximal class, it

has a normal abelian subgroup, say R, of type (p, p). Since R1 < R, we get

R/R1, R2/R1 ≤ Z(G/R1) so |Z(G/G1)| ≥ p2, a final contradiction.

In conclusion we consider an arbitrary p-group G without Hp-chains. By

Theorem 11, G must be irregular. Let M be the set of all normal subgroups



Vol. 168, 2008 HALL CHAINS IN NORMAL SUBGROUPS 47

H of G such that there is an Hp-chain, say CH , in H (as a normal subgroup of

G). Let M0 be the set of all H ∈ M such that, whenever H1 ∈ M with an

Hp-chain, say CH1
, then, with respect to lexicographic ordering, the sequence

|L1|, |L2 : L1|, . . . , |Ln : Ln−1| of indices of the chain CH is greater or equal than

the sequence |M1|, |M1 : M0|, . . . , |Ms : Ms−1| of indices of the chain CH1
(so

that we compare only Hp-chains). Thus, if H, H1 ∈ M0, then i0(CH) = i0(CH1
),

|CH | = |CH1
|, |H | = |H1| and corresponding indices of these chains are equal.

In what follows we use the notation introduced in this paragraph.

Let G be a p-group of maximal class and order > p3 and let R / G with

|G : R| = p4. Then G/R has the unique abelian subgroup G1/R of index p. This

G1 is called the fundamental subgroup of G. Clearly, G1 is characteristic in

G.2 If, in addition, |G| > pp+1, then G1 is the unique regular maximal subgroup

of G; all other maximal subgroups of G are irregular of maximal class.

Proposition 13: Let a p-group G have no Hp-chains and let H ∈ M0, p > 2.

Suppose that H has no normal subgroup of order pp and exponent p, or, what

is the same, i0(CH) = 0. Then G is of maximal class and order ≥ p2p and H is

either absolutely regular or of maximal class.

(a) If H is absolutely regular, then H = G1, the fundamental subgroup of

G, and M0 = {H}.

(b) Suppose that H is irregular of maximal class. Then |G : H | = p,

|H | = p2p−1 and |Ω1(H)| = pp−1. In that case, G1 6∈ M0.

Proof. By Theorem 11, G is irregular. We also have |G| > pp+1 (otherwise, G

has an Hp-chain as Remark 3 shows). It follows from Lemma 7 that H is either

absolutely regular or irregular of maximal class. If there is R / G of order pp

and exponent p, then the Hp-chain CR : {1} < R dominates over CH , contrary

to the choice of H . Therefore, by Lemma 7 and Theorem 11, G is of maximal

class. Since G has a normal subgroup of order pp−1 and exponent p, we get

|Ω1(H)| = pp−1. It is worthwhile to notice that any normal subgroup K of

index > p in G is contained in Φ(G) so absolutely regular; then also K < G1.

Since G has no Hp-chain, we get |G| > p2p−1 (Remark 3).

2 Using so defined subgroup G1, it is easy to construct an Hk-chain in G for each k,

1 < k < p (see Remark 3). Indeed, let |G1| = pn, where n = kt+ s, 0 ≤ s < k. Let Li be

a G-invariant subgroup of order pki in G1, i ≤ t. Then C : {1} = L0 < L1 < · · · < Lt < G

is an Hk-chain in G. So constructed chain C is a unique Hk-chain in G if and only if

s > 0 (for s = 0, the number of Hk-chains in G equals p + 1).
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Let H be absolutely regular. Then |G : H | = p (otherwise, H < G1 and there

is an Hp-chain in G1). Since G1 is the unique regular maximal subgroup of G,

we get H = G1. Suppose, in addition, that H0 ∈ M0 − {H}. In that case, H0

is irregular of maximal class and index p in G. Since H0 has an Hp-chain, we

get |H | ≤ p2p−1 so we have |H0| = p2p−1 since |G : H0| = p and G| > p2p−1.

In that case, the last index of the Hp-chain of H0 equals pp so it is not equal

to every index of the Hp-chain of the absolutely regular group H , and this is a

contradiction. Thus, we have M0 = {1}, completing the proof of (a).

Now let H be irregular of maximal class. Then, as we have noticed already,

|G : H | = p. By Remark 3, since |G| ≥ p2p, we get |H | = p2p−1. Since G has

no normal subgroup of order pp and exponent pp, we get |Ω1(H)| = pp−1. Since

the Hp-chain of G1 has no index = pp, we get G1 6∈ M0, completing the proof

of (b) and thereby the proposition.

Proposition 14: Suppose that a p-group G has no Hp-chains. Let H ∈ M0

and let

C = CH : {1} = L0 < L1 < · · · < Ln = H

be an Hp-chain in H with i0 = i0(C) > 0. Write U = Li0 and Ḡ = G/U . Then

|C| > i0 and one of the following holds:

(a) Ḡ is absolutely regular. Then exp(Ḡ) > p. In that case, Li0+1 <

Ωi0+1(G) and, if |CH | > i0 + 1, then exp(Li0+1) = pi0+1, Li0+1 <

Ωi0+1(G) and Li0+2/Li0+1 < Ω1(G/Li0+1).

(b) Ḡ is irregular of maximal class. Then H̄ is either absolutely regular

or irregular of maximal class. (b1) If |Ḡ| = pp+1, then all maximal

subgroups of Ḡ are absolutely regular so |Ω1(Ḡ)| = pp−1. In that case,

Li0 < Ωi0(G).

(b2) Let H̄ be irregular of maximal class. Then |G : H | = p, |Ω1(H̄) =

pp−1, |Ḡ| ≤ p2p and |CH | = i0 + 2.

Proof. Write i0 = i0(C) and U = Li0 . If F/U is normal subgroup of order pp

and exponent p in G/U , then the Hp-chain in F strongly dominates over C,

which is a contradiction. Therefore, Ḡ = G/U has no normal subgroup of order

pp and exponent p so it is either absolutely regular or irregular of maximal class

(Lemma 7). Assume that |C| = i0. Take in Ḡ a normal subgroup F̄ of order p.

Then {1} = L1 < L1 < · · · < Li0 = H < F is an Hp-chain in F and it strongly

dominates over C, a contradiction. Thus, |C| > i0.
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(a) Suppose that G/U is absolutely regular; then exp(G/U) > p (otherwise,

G has an Hp-chain {1} = L1 < L1 < · · · < Li0 = U < G). Since Li0+1

has an Hp-chain of length i0 + 1 and G/Li0+1 is absolutely regular, it follows

that Li0+1 < Ωi0+1(G) (otherwise, by Lemma 2(b), G has an Hp-chain). Next,

suppose that |CH | > i0 + 1. Consider the subgroup W = Li0+2. We have

Ωi0+1(H) = Li0+1(< H) so exp(Li0+1) = pi0+1. Assume that W/Li0+1 =

Ω1(G/Li0+1). Let x ∈ G − Li0+1 be of minimal order and let o(xLi0+1(G) = p

in G/Li0+1, then, by what has been said already, o(x) ≤ pi0+1 and xp ∈ Li0+1.

In that case, by construction, x ∈ W = Li0+2. However, x ∈ Ωi0+1(W ) = Li0+1,

contrary to the choice of x. Thus, W/Li0+1 < Ω1(G/Li0+1), completing this

case.

(b) Suppose that Ḡ = G/U is irregular of maximal class. Then H̄ is either

absolutely regular or of maximal class.

Let |Ḡ| = pp+1. If H̄1 < Ḡ is of order pp and exponent p, then {1} = L0 <

L1 < · · · < Li0 < H1 < G is a Hp-chain in G (all indices of that chain, apart of

the last one, equal pp), so, comparing indices of that chain with indices of the

chain C, we get H 6∈ M0, a contradiction. Thus, all maximal subgroups of Ḡ

are absolutely regular so Ω1(Ḡ) = Φ(Ḡ) is of order pp−1 and exponent p. Since

G has no Hp-chain, it follows that Li0 < Ωi0(G) (otherwise, G has an Hp-chain,

whose (i0 + 1)th member coincides with the inverse image of Ω1(Ḡ) in G, and

the following member is G), completing the proof of (b1).

Now let H̄ be irregular of maximal class; then |G : H | = |Ḡ : H̄ | = p. Since H̄

has no G-invariant subgroup of order pp and exponent p, we get |Ω1(H̄)| = pp−1

since H̄ has an Hp-chain. All remaining assertions follow from Proposition

13.

Metacyclic p-groups, p > 2, regular so they have an H2-chain (Theorem 11).

This is not the case for metacyclic 2-groups.

Proposition 15: The following conditions for a metacyclic 2-group G of order

≥ 24 are equivalent:

(a) G has no H2-chain.

(b) There is k ≥ 0 such that |Ωi(G)| = 22i for all i ≤ k and G/Ωk(G) is of

maximal class and order ≥ 24.

Proof. Let the set M0 be such as in Propositions 13 and 14. Take H ∈ M0

and let C = CH be a H2-chain in H . Set i0 = i0(C). Then U = Li0 = Ωi0(G)
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so G/U is of maximal class, by the above and Lemma 2(b). If G/U ∼= Q8, then

{1} < Ω1(G) < · · · < U < Ωi0+1(G) < G is an H2-chain in G, a contradiction.

Now assume that G/U ∼= D8. Let H/U < G/U be abelian of type (2, 2). Then

{1} < Ω1(G) < · · · < U < H < G is an H2-chain in G, a contradiction. Thus,

|G/U | ≥ 24. Clearly, |Ωi(G)| = 22i for all i ≤ i0.

Let |G/U | > 23. It remains to show that G has no H2-chain. Assume that

C is an H2-chain as in Definition 1. Since G/U is of maximal class, we get

Ωi0+2(G) = G so Li0+2 = G. Since |Li0+2| ≤ 22k+3 < 22k+4 ≤ G, we get a

contradiction.

Supplement to Proposition 15: Let G be a metacyclic p-group such that

Ch2(G) > 1 (see Remark 4). Then p = 2 and there is k such that |Ωi(G)| = 22i

and G/Ω2i(G) is dihedral of order 8 for all i ≤ k (in the last case, Ch2(G) = 2).

This follows easily from the proof of Proposition 15.

PROBLEMS. Below, H > {1} is a normal subgroup of a p-group G.

1. Study the structure of G provided there exists only one H2-chain in G.

2. Let G be a group of order ppk such that Ωk(G) = G. Describe the

structure of G provided exp(G) > pk.

3. Find an algorithm producing all Hk-chains in abelian p-groups.

4. Classify the 2-groups which have no H2-chains.

5. Given a natural number k, a chain C0 : H = H0 > H1 > · · · > Hn = {1}

of G-invariant subgroups is said to be a lower k-admissible chain in H

provided Hi−1/Hi is of order ≤ pk and exponent p (i = 1, . . . , n).

The above chain is said to be a lower Hk-chain in G if, whenever

|H/Hi| < pki, then Hi = fi(H). (i) Is it true that, whenever H is

a lower pyramidal (see Remark 1), it possesses a lower Hk-chain? (ii)

Study the p-groups without lower Hp-chains.

6. Suppose that H is a P2-subgroup such that all sections of H are pyra-

midal. Is it true that there exists in H an Hk-chain for any k?

7. Does there exist in H an Hp-chain if all sections of H of order pp+1 are

P-groups?

8. Suppose that p-groups G and G0 are lattice isomorphic and G has an

Hp-chain. Is it true that also G0 has an Hp-chain?



Vol. 168, 2008 HALL CHAINS IN NORMAL SUBGROUPS 51

9. Suppose that a p-group H has an Hk-chain, say C. Now let H/G, where

G is a p-group. Find sufficient conditions for existing an Hk-chain in H

(as a normal subgroup in G).

10. Is it true that the number of Hk-chains in any abelian p-group is con-

gruent with 1 (mod p)?
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